babybirdprd's picture
Upload folder using huggingface_hub
9ddf2a9 verified
---
tags:
- merge
- mergekit
- lazymergekit
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
base_model:
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
---
# Experiment26-7B-passthrough-6slice
Experiment26-7B-passthrough-6slice is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [yam-peleg/Experiment26-7B](https://huggingface.co/yam-peleg/Experiment26-7B)
* [yam-peleg/Experiment26-7B](https://huggingface.co/yam-peleg/Experiment26-7B)
* [yam-peleg/Experiment26-7B](https://huggingface.co/yam-peleg/Experiment26-7B)
* [yam-peleg/Experiment26-7B](https://huggingface.co/yam-peleg/Experiment26-7B)
* [yam-peleg/Experiment26-7B](https://huggingface.co/yam-peleg/Experiment26-7B)
* [yam-peleg/Experiment26-7B](https://huggingface.co/yam-peleg/Experiment26-7B)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: yam-peleg/Experiment26-7B
layer_range: [0, 7]
- sources:
- model: yam-peleg/Experiment26-7B
layer_range: [5, 12]
- sources:
- model: yam-peleg/Experiment26-7B
layer_range: [10, 17]
- sources:
- model: yam-peleg/Experiment26-7B
layer_range: [15, 22]
- sources:
- model: yam-peleg/Experiment26-7B
layer_range: [20, 27]
- sources:
- model: yam-peleg/Experiment26-7B
layer_range: [25, 32]
merge_method: passthrough
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "babybirdprd/Experiment26-7B-passthrough-6slice"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```