File size: 6,520 Bytes
ddb3338
5188ae8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddb3338
 
5188ae8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: xlsr-polish
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_17_0
      type: common_voice_17_0
      config: pl
      split: validation
      args: pl
    metrics:
    - name: Wer
      type: wer
      value: 0.1443174034459139
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/badr-nlp/xlsr-continual-finetuning-polish/runs/v7cepqow)
# xlsr-polish

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1686
- Wer: 0.1443
- Cer: 0.0313

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| 4.7158        | 0.1543 | 100  | 4.0453          | 1.0    | 1.0    |
| 3.3469        | 0.3086 | 200  | 3.2544          | 1.0    | 1.0    |
| 2.9194        | 0.4630 | 300  | 2.7288          | 0.9985 | 0.8650 |
| 0.921         | 0.6173 | 400  | 0.5673          | 0.5449 | 0.1303 |
| 0.8196        | 0.7716 | 500  | 0.4311          | 0.4439 | 0.1025 |
| 0.7248        | 0.9259 | 600  | 0.3672          | 0.3894 | 0.0875 |
| 0.1727        | 1.0802 | 700  | 0.3141          | 0.3363 | 0.0739 |
| 0.1807        | 1.2346 | 800  | 0.3075          | 0.3463 | 0.0758 |
| 0.1683        | 1.3889 | 900  | 0.2969          | 0.3217 | 0.0707 |
| 0.1616        | 1.5432 | 1000 | 0.2650          | 0.3045 | 0.0675 |
| 0.1569        | 1.6975 | 1100 | 0.2718          | 0.2912 | 0.0658 |
| 0.1185        | 1.8519 | 1200 | 0.2647          | 0.3139 | 0.0672 |
| 0.1101        | 2.0062 | 1300 | 0.2476          | 0.2659 | 0.0576 |
| 0.1296        | 2.1605 | 1400 | 0.2493          | 0.2704 | 0.0590 |
| 0.0829        | 2.3148 | 1500 | 0.2299          | 0.2614 | 0.0576 |
| 0.0881        | 2.4691 | 1600 | 0.2434          | 0.2670 | 0.0601 |
| 0.125         | 2.6235 | 1700 | 0.2318          | 0.2745 | 0.0570 |
| 0.1227        | 2.7778 | 1800 | 0.2245          | 0.2527 | 0.0542 |
| 0.1128        | 2.9321 | 1900 | 0.2293          | 0.2600 | 0.0562 |
| 0.079         | 3.0864 | 2000 | 0.2227          | 0.2511 | 0.0530 |
| 0.0906        | 3.2407 | 2100 | 0.2289          | 0.2331 | 0.0515 |
| 0.09          | 3.3951 | 2200 | 0.2196          | 0.2486 | 0.0528 |
| 0.1113        | 3.5494 | 2300 | 0.2230          | 0.2392 | 0.0539 |
| 0.0867        | 3.7037 | 2400 | 0.2155          | 0.2237 | 0.0492 |
| 0.097         | 3.8580 | 2500 | 0.2120          | 0.2261 | 0.0493 |
| 0.0659        | 4.0123 | 2600 | 0.2073          | 0.2216 | 0.0493 |
| 0.0796        | 4.1667 | 2700 | 0.2135          | 0.2181 | 0.0468 |
| 0.0601        | 4.3210 | 2800 | 0.2034          | 0.2190 | 0.0480 |
| 0.0644        | 4.4753 | 2900 | 0.2115          | 0.2092 | 0.0456 |
| 0.0772        | 4.6296 | 3000 | 0.1986          | 0.2127 | 0.0461 |
| 0.066         | 4.7840 | 3100 | 0.1985          | 0.2027 | 0.0447 |
| 0.0633        | 4.9383 | 3200 | 0.2094          | 0.2115 | 0.0456 |
| 0.0579        | 5.0926 | 3300 | 0.2058          | 0.2169 | 0.0460 |
| 0.0709        | 5.2469 | 3400 | 0.1976          | 0.1973 | 0.0428 |
| 0.0405        | 5.4012 | 3500 | 0.2001          | 0.1965 | 0.0424 |
| 0.0515        | 5.5556 | 3600 | 0.2035          | 0.2014 | 0.0438 |
| 0.0785        | 5.7099 | 3700 | 0.1864          | 0.1928 | 0.0412 |
| 0.0514        | 5.8642 | 3800 | 0.1850          | 0.1858 | 0.0397 |
| 0.0355        | 6.0185 | 3900 | 0.1903          | 0.1837 | 0.0399 |
| 0.0621        | 6.1728 | 4000 | 0.1881          | 0.1798 | 0.0392 |
| 0.0525        | 6.3272 | 4100 | 0.1852          | 0.1881 | 0.0403 |
| 0.0497        | 6.4815 | 4200 | 0.1855          | 0.1770 | 0.0387 |
| 0.0362        | 6.6358 | 4300 | 0.1945          | 0.1899 | 0.0400 |
| 0.0399        | 6.7901 | 4400 | 0.1803          | 0.1742 | 0.0378 |
| 0.0483        | 6.9444 | 4500 | 0.1777          | 0.1723 | 0.0372 |
| 0.0293        | 7.0988 | 4600 | 0.1903          | 0.1697 | 0.0369 |
| 0.0635        | 7.2531 | 4700 | 0.1787          | 0.1726 | 0.0365 |
| 0.0199        | 7.4074 | 4800 | 0.1722          | 0.1682 | 0.0362 |
| 0.0393        | 7.5617 | 4900 | 0.1918          | 0.1641 | 0.0357 |
| 0.0357        | 7.7160 | 5000 | 0.1801          | 0.1649 | 0.0358 |
| 0.0444        | 7.8704 | 5100 | 0.1775          | 0.1626 | 0.0353 |
| 0.0266        | 8.0247 | 5200 | 0.1693          | 0.1592 | 0.0341 |
| 0.0381        | 8.1790 | 5300 | 0.1794          | 0.1571 | 0.0341 |
| 0.0308        | 8.3333 | 5400 | 0.1685          | 0.1551 | 0.0333 |
| 0.0304        | 8.4877 | 5500 | 0.1752          | 0.1519 | 0.0330 |
| 0.0316        | 8.6420 | 5600 | 0.1752          | 0.1507 | 0.0326 |
| 0.0377        | 8.7963 | 5700 | 0.1671          | 0.1523 | 0.0328 |
| 0.0588        | 8.9506 | 5800 | 0.1725          | 0.1550 | 0.0335 |
| 0.0487        | 9.1049 | 5900 | 0.1774          | 0.1531 | 0.0332 |
| 0.0169        | 9.2593 | 6000 | 0.1709          | 0.1470 | 0.0318 |
| 0.0274        | 9.4136 | 6100 | 0.1778          | 0.1468 | 0.0318 |
| 0.023         | 9.5679 | 6200 | 0.1718          | 0.1482 | 0.0322 |
| 0.0274        | 9.7222 | 6300 | 0.1700          | 0.1451 | 0.0315 |
| 0.0349        | 9.8765 | 6400 | 0.1686          | 0.1443 | 0.0313 |


### Framework versions

- Transformers 4.42.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1