|
--- |
|
license: cc-by-nc-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- invoices |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
base_model: microsoft/layoutlmv3-base |
|
model-index: |
|
- name: layoutlmv3-finetuned-invoice |
|
results: |
|
- task: |
|
type: token-classification |
|
name: Token Classification |
|
dataset: |
|
name: invoices |
|
type: invoices |
|
config: sroie |
|
split: train |
|
args: sroie |
|
metrics: |
|
- type: precision |
|
value: 0.975 |
|
name: Precision |
|
- type: recall |
|
value: 0.975 |
|
name: Recall |
|
- type: f1 |
|
value: 0.975 |
|
name: F1 |
|
- type: accuracy |
|
value: 0.975 |
|
name: Accuracy |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-invoice |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the invoices dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2299 |
|
- Precision: 0.975 |
|
- Recall: 0.975 |
|
- F1: 0.975 |
|
- Accuracy: 0.975 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:-----:|:--------:| |
|
| No log | 14.29 | 100 | 0.1616 | 0.975 | 0.975 | 0.975 | 0.975 | |
|
| No log | 28.57 | 200 | 0.1909 | 0.975 | 0.975 | 0.975 | 0.975 | |
|
| No log | 42.86 | 300 | 0.2046 | 0.975 | 0.975 | 0.975 | 0.975 | |
|
| No log | 57.14 | 400 | 0.2134 | 0.975 | 0.975 | 0.975 | 0.975 | |
|
| 0.1239 | 71.43 | 500 | 0.2299 | 0.975 | 0.975 | 0.975 | 0.975 | |
|
| 0.1239 | 85.71 | 600 | 0.2309 | 0.975 | 0.975 | 0.975 | 0.975 | |
|
| 0.1239 | 100.0 | 700 | 0.2342 | 0.975 | 0.975 | 0.975 | 0.975 | |
|
| 0.1239 | 114.29 | 800 | 0.2407 | 0.975 | 0.975 | 0.975 | 0.975 | |
|
| 0.1239 | 128.57 | 900 | 0.2428 | 0.975 | 0.975 | 0.975 | 0.975 | |
|
| 0.0007 | 142.86 | 1000 | 0.2449 | 0.975 | 0.975 | 0.975 | 0.975 | |
|
| 0.0007 | 157.14 | 1100 | 0.2465 | 0.975 | 0.975 | 0.975 | 0.975 | |
|
| 0.0007 | 171.43 | 1200 | 0.2488 | 0.975 | 0.975 | 0.975 | 0.975 | |
|
| 0.0007 | 185.71 | 1300 | 0.2515 | 0.975 | 0.975 | 0.975 | 0.975 | |
|
| 0.0007 | 200.0 | 1400 | 0.2525 | 0.975 | 0.975 | 0.975 | 0.975 | |
|
| 0.0004 | 214.29 | 1500 | 0.2540 | 0.975 | 0.975 | 0.975 | 0.975 | |
|
| 0.0004 | 228.57 | 1600 | 0.2557 | 0.975 | 0.975 | 0.975 | 0.975 | |
|
| 0.0004 | 242.86 | 1700 | 0.2564 | 0.975 | 0.975 | 0.975 | 0.975 | |
|
| 0.0004 | 257.14 | 1800 | 0.2570 | 0.975 | 0.975 | 0.975 | 0.975 | |
|
| 0.0004 | 271.43 | 1900 | 0.2573 | 0.975 | 0.975 | 0.975 | 0.975 | |
|
| 0.0003 | 285.71 | 2000 | 0.2574 | 0.975 | 0.975 | 0.975 | 0.975 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.23.0.dev0 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|