metadata
license: apache-2.0
library_name: transformers
tags:
- mergekit
- merge
base_model:
- bamec66557/MISCHIEVOUS-12B-Mix_0.4v
- bamec66557/MISCHIEVOUS-12B-Mix_0.5v
model-index:
- name: MISCHIEVOUS-12B-Mix_Neo
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 62.5
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bamec66557/MISCHIEVOUS-12B-Mix_Neo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 30.36
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bamec66557/MISCHIEVOUS-12B-Mix_Neo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 11.63
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bamec66557/MISCHIEVOUS-12B-Mix_Neo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.84
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bamec66557/MISCHIEVOUS-12B-Mix_Neo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.64
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bamec66557/MISCHIEVOUS-12B-Mix_Neo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 29.84
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bamec66557/MISCHIEVOUS-12B-Mix_Neo
name: Open LLM Leaderboard
datasets:
- open-llm-leaderboard/bamec66557__MISCHIEVOUS-12B-Mix_Neo-details
merge
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the SLERP merge method.
Models Merged
The following models were included in the merge:
Configuration
The following YAML configuration was used to produce this model:
description: Merging MISCHIEVOUS-12B-Mix models with sliced slerp
# Metadata and Rationale
model_description: |
This configuration merges two versions of the MISCHIEVOUS-12B-Mix model: 0.4v and 0.3v.
0.3v was further fine-tuned on a specific dataset (ADD DATASET NAME HERE if known).
The sliced slerp approach allows for layer-specific control over the merging process.
base_model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v
dtype: bfloat16
merge_method: slerp
tokenizer_source: union
# Slices Configuration (Layer-Specific Merging)
slices:
- sources:
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v
layer_range: [0, 10]
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.5v
layer_range: [0, 10]
parameters:
t:
- name: self_attn
value: [0.8, 0.85, 0.9, 0.95, 1.0]
- name: mlp
value: [0.9, 0.95, 1.0, 1.05, 1.1]
- name: layer_norm
value: [0.6, 0.65, 0.7, 0.75, 0.8]
- name: embed_tokens
value: [1.0]
- sources:
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v
layer_range: [10, 20]
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.5v
layer_range: [10, 20]
parameters:
t:
- name: self_attn
value: [0.7, 0.75, 0.8, 0.85, 0.9]
- name: mlp
value: [1.0, 0.95, 0.9, 0.85, 0.8]
- name: layer_norm
value: [0.5, 0.55, 0.6, 0.65, 0.7]
- name: embed_tokens
value: [1.0]
- sources:
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v
layer_range: [20, 30]
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.5v
layer_range: [20, 30]
parameters:
t:
- name: self_attn
value: [0.6, 0.65, 0.7, 0.75, 0.8]
- name: mlp
value: [0.8, 0.75, 0.7, 0.65, 0.6]
- name: layer_norm
value: [0.4, 0.45, 0.5, 0.55, 0.6]
- name: embed_tokens
value: [1.0]
- sources:
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v
layer_range: [30, 40]
- model: bamec66557/MISCHIEVOUS-12B-Mix_0.5v
layer_range: [30, 40]
parameters:
t:
- name: self_attn
value: [0.9, 1.0, 1.1, 1.2, 1.3]
- name: mlp
value: [0.7, 0.65, 0.6, 0.55, 0.5]
- name: layer_norm
value: [0.7, 0.75, 0.8, 0.85, 0.9]
- name: embed_tokens
value: [1.0]
# Regularization (Prevent Overfitting During Merging)
regularization:
- method: weight_clipping
clip_range: [-0.2, 0.2]
- method: random_noise
scale: 0.015
- method: l2_norm
scale: 0.01
# Postprocessing (Enhance Merged Model Quality)
postprocessing:
- operation: random_noise
scale: 0.0025
- operation: non_linear_scaling
parameters:
function: tanh
- operation: sharpening
intensity: 0.3
- operation: gaussian_smoothing
sigma: 1.5
- operation: smoothing
parameters:
adaptive: true
range: [0.8, 1.2]
kernel_size: 5
- operation: normalize
- operation: dynamic_scaling
scale_range: [0.75, 1.25]
# Evaluation (Crucial for Assessing Merge Quality)
evaluation:
metrics:
- perplexity
- accuracy # If applicable (e.g., classification tasks)
- bleu # For translation tasks
- rouge # For summarization tasks
datasets:
- wikitext # General language understanding
- lambada # Long-range dependency modeling
- (ADD RELEVANT TASK-SPECIFIC DATASETS HERE)
prompts: # Example prompts – REPLACE WITH YOUR OWN
- "The quick brown fox jumps over the lazy dog."
- "Translate 'Thank you' to Spanish:"
- "Write a short summary of the French Revolution."
# Logging and Output
logging:
output_dir: ./merged_models
log_level: INFO
# Optional: Ties Merging (Advanced Technique)
# ties:
# enabled: true
# method: greedy # Or "optimal", "random"
# layers: [0, 10, 20, 30] # Example layers for ties merging
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 25.80 |
IFEval (0-Shot) | 62.50 |
BBH (3-Shot) | 30.36 |
MATH Lvl 5 (4-Shot) | 11.63 |
GPQA (0-shot) | 8.84 |
MuSR (0-shot) | 11.64 |
MMLU-PRO (5-shot) | 29.84 |