|
--- |
|
language: |
|
- fr |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- allocine |
|
widget: |
|
- text: "Un film magnifique avec un duo d'acteurs excellent." |
|
- text: "Grosse déception pour ce thriller qui peine à convaincre." |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: distilcamembert-allocine |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: allocine |
|
type: allocine |
|
config: allocine |
|
split: validation |
|
args: allocine |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9714 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9709909727152854 |
|
- name: Precision |
|
type: precision |
|
value: 0.9648256399919372 |
|
- name: Recall |
|
type: recall |
|
value: 0.9772356063699469 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilcamembert-allocine |
|
|
|
This model is a fine-tuned version of [cmarkea/distilcamembert-base](https://huggingface.co/cmarkea/distilcamembert-base) on the allocine dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1066 |
|
- Accuracy: 0.9714 |
|
- F1: 0.9710 |
|
- Precision: 0.9648 |
|
- Recall: 0.9772 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
| :-----------: | :---: | :---: | :-------------: | :------: | :----: | :-------: | :----: | |
|
| 0.1504 | 0.2 | 500 | 0.1290 | 0.9555 | 0.9542 | 0.9614 | 0.9470 | |
|
| 0.1334 | 0.4 | 1000 | 0.1049 | 0.9624 | 0.9619 | 0.9536 | 0.9703 | |
|
| 0.1158 | 0.6 | 1500 | 0.1052 | 0.963 | 0.9627 | 0.9498 | 0.9760 | |
|
| 0.1153 | 0.8 | 2000 | 0.0949 | 0.9661 | 0.9653 | 0.9686 | 0.9620 | |
|
| 0.1053 | 1.0 | 2500 | 0.0936 | 0.9666 | 0.9663 | 0.9542 | 0.9788 | |
|
| 0.0755 | 1.2 | 3000 | 0.0987 | 0.97 | 0.9695 | 0.9644 | 0.9748 | |
|
| 0.0716 | 1.4 | 3500 | 0.1078 | 0.9688 | 0.9684 | 0.9598 | 0.9772 | |
|
| 0.0688 | 1.6 | 4000 | 0.1051 | 0.9673 | 0.9670 | 0.9552 | 0.9792 | |
|
| 0.0691 | 1.8 | 4500 | 0.0940 | 0.9709 | 0.9704 | 0.9688 | 0.9720 | |
|
| 0.0733 | 2.0 | 5000 | 0.1038 | 0.9686 | 0.9683 | 0.9558 | 0.9812 | |
|
| 0.0476 | 2.2 | 5500 | 0.1066 | 0.9714 | 0.9710 | 0.9648 | 0.9772 | |
|
| 0.047 | 2.4 | 6000 | 0.1098 | 0.9689 | 0.9686 | 0.9587 | 0.9788 | |
|
| 0.0431 | 2.6 | 6500 | 0.1110 | 0.9711 | 0.9706 | 0.9666 | 0.9747 | |
|
| 0.0464 | 2.8 | 7000 | 0.1149 | 0.9697 | 0.9694 | 0.9592 | 0.9798 | |
|
| 0.0342 | 3.0 | 7500 | 0.1122 | 0.9703 | 0.9699 | 0.9621 | 0.9778 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |
|
|