Karols's picture
Upload README.md with huggingface_hub
0752174
metadata
language: es
tags:
  - text-classification
  - financial-sentiment-analysis
  - sentiment-analysis
datasets:
  - datasets/financial_phrasebank
metrics:
  - f1
  - accuracy
  - precision
  - recall
widget:
  - text: Las ventas netas aumentaron un 30%, hasta 36 millones de euros.
    example_title: Example 1
  - text: Comienza el Black Friday. Lista de promociones en tienda.
    example_title: Example 2
  - text: >-
      Las acciones de CDPROJEKT registraron la mayor caída entre las empresas
      cotizadas en la WSE.
    example_title: Example 3

Finance Sentiment ES (base)

Finance Sentiment ES (base) is a model based on bert-base-spanish-wwm-cased for analyzing sentiment of Spanish financial news. It was trained on the translated version of Financial PhraseBank by Malo et al. (20014) for 10 epochs on single RTX3090 gpu.

The model will give you a three labels: positive, negative and neutral.

How to use

You can use this model directly with a pipeline for sentiment-analysis:

from transformers import pipeline

nlp = pipeline("sentiment-analysis", model="bardsai/finance-sentiment-es-base")
nlp("Las ventas netas aumentaron un 30%, hasta 36 millones de euros.")
[{'label': 'positive', 'score': 0.9987998807375955}]

Performance

Metric Value
f1 macro 0.973
precision macro 0.974
recall macro 0.972
accuracy 0.978
samples per second 135.1

(The performance was evaluated on RTX 3090 gpu)

Changelog

  • 2023-09-18: Initial release

About bards.ai

At bards.ai, we focus on providing machine learning expertise and skills to our partners, particularly in the areas of nlp, machine vision and time series analysis. Our team is located in Wroclaw, Poland. Please visit our website for more information: bards.ai

Let us know if you use our model :). Also, if you need any help, feel free to contact us at info@bards.ai