Edit model card

Whisper Medium PL

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 11.0 and the FLEURS datasets. It achieves the following results on the evaluation set:

  • Loss: 0.3947
  • Wer: 8.6872

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0805 0.48 500 0.2556 10.4888
0.0685 0.96 1000 0.2462 10.7608
0.0356 1.45 1500 0.2561 9.6728
0.0337 1.93 2000 0.2327 9.6459
0.017 2.41 2500 0.2444 9.9464
0.0179 2.9 3000 0.2554 9.6476
0.0056 3.38 3500 0.3001 9.3638
0.007 3.86 4000 0.2809 9.2245
0.0033 4.34 4500 0.3235 9.3437
0.0024 4.83 5000 0.3148 9.0633
0.0008 5.31 5500 0.3416 9.0112
0.0011 5.79 6000 0.3876 9.1858
0.0004 6.27 6500 0.3745 8.7292
0.0003 6.76 7000 0.3704 9.0314
0.0003 7.24 7500 0.3929 8.6553
0.0002 7.72 8000 0.3947 8.6872

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2
Downloads last month
38
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train bardsai/whisper-medium-pl-v2

Collection including bardsai/whisper-medium-pl-v2

Evaluation results