whisper-small-pl / README.md
janql's picture
Update metadata with huggingface_hub
eea0d8f
|
raw
history blame
1.92 kB
metadata
language:
  - pl
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
  - google/fleurs
model-index:
  - name: Whisper Small PL
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0
          type: mozilla-foundation/common_voice_11_0
          config: pl
          split: test
        metrics:
          - type: wer
            value: 60
            name: WER
          - type: wer_without_norm
            value: 60
            name: WER unnormalized
          - type: cer
            value: 40.74
            name: CER

Whisper Small PL

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 and the FLEURS datasets. It achieves the following results on the evaluation set:

  • eval_loss: 0.3571
  • eval_wer: 14.8004
  • eval_runtime: 2233.4204
  • eval_samples_per_second: 3.714
  • eval_steps_per_second: 0.232
  • epoch: 4.03
  • step: 3000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 24
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 48
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2