bartowski's picture
Update metadata with huggingface_hub
7b93358 verified
|
raw
history blame
51.7 kB
metadata
quantized_by: bartowski
pipeline_tag: text-generation
language:
  - en
tags:
  - language
  - granite
  - embeddings
license: apache-2.0
base_model: ibm-granite/granite-embedding-125m-english
model-index:
  - name: ibm-granite/granite-embedding-125m-english
    results:
      - task:
          type: Retrieval
        dataset:
          name: MTEB ArguaAna
          type: mteb/arguana
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.33642
          - type: map_at_10
            value: 0.49716
          - type: map_at_100
            value: 0.50519
          - type: map_at_1000
            value: 0.50521
          - type: map_at_3
            value: 0.45057
          - type: map_at_5
            value: 0.47774
          - type: mrr_at_1
            value: 0.34922
          - type: mrr_at_10
            value: 0.50197
          - type: mrr_at_100
            value: 0.50992
          - type: mrr_at_1000
            value: 0.50994
          - type: mrr_at_3
            value: 0.45484
          - type: mrr_at_5
            value: 0.48272
          - type: ndcg_at_1
            value: 0.33642
          - type: ndcg_at_10
            value: 0.58401
          - type: ndcg_at_100
            value: 0.6157
          - type: ndcg_at_1000
            value: 0.61608
          - type: ndcg_at_3
            value: 0.48825
          - type: ndcg_at_5
            value: 0.53689
          - type: precision_at_1
            value: 0.33642
          - type: precision_at_10
            value: 0.08606
          - type: precision_at_100
            value: 0.00994
          - type: precision_at_1000
            value: 0.001
          - type: precision_at_3
            value: 0.19915
          - type: precision_at_5
            value: 0.14296
          - type: recall_at_1
            value: 0.33642
          - type: recall_at_10
            value: 0.8606
          - type: recall_at_100
            value: 0.9936
          - type: recall_at_1000
            value: 0.99644
          - type: recall_at_3
            value: 0.59744
          - type: recall_at_5
            value: 0.71479
      - task:
          type: Retrieval
        dataset:
          name: MTEB ClimateFEVER
          type: mteb/climate-fever
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.1457
          - type: map_at_10
            value: 0.24102
          - type: map_at_100
            value: 0.25826
          - type: map_at_1000
            value: 0.26021
          - type: map_at_3
            value: 0.20346
          - type: map_at_5
            value: 0.22228
          - type: mrr_at_1
            value: 0.32573
          - type: mrr_at_10
            value: 0.44411
          - type: mrr_at_100
            value: 0.45176
          - type: mrr_at_1000
            value: 0.45209
          - type: mrr_at_3
            value: 0.4126
          - type: mrr_at_5
            value: 0.43312
          - type: ndcg_at_1
            value: 0.32573
          - type: ndcg_at_10
            value: 0.3315
          - type: ndcg_at_100
            value: 0.39898
          - type: ndcg_at_1000
            value: 0.43151
          - type: ndcg_at_3
            value: 0.27683
          - type: ndcg_at_5
            value: 0.29538
          - type: precision_at_1
            value: 0.32573
          - type: precision_at_10
            value: 0.10176
          - type: precision_at_100
            value: 0.01754
          - type: precision_at_1000
            value: 0.00236
          - type: precision_at_3
            value: 0.20347
          - type: precision_at_5
            value: 0.15505
          - type: recall_at_1
            value: 0.1457
          - type: recall_at_10
            value: 0.38825
          - type: recall_at_100
            value: 0.62237
          - type: recall_at_1000
            value: 0.8022
          - type: recall_at_3
            value: 0.25245
          - type: recall_at_5
            value: 0.30821
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackAndroidRetrieval
          type: mteb/cqadupstack-android
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.36964
          - type: map_at_10
            value: 0.5043
          - type: map_at_100
            value: 0.52066
          - type: map_at_1000
            value: 0.52175
          - type: map_at_3
            value: 0.46001
          - type: map_at_5
            value: 0.48312
          - type: mrr_at_1
            value: 0.45923
          - type: mrr_at_10
            value: 0.56733
          - type: mrr_at_100
            value: 0.57292
          - type: mrr_at_1000
            value: 0.57321
          - type: mrr_at_3
            value: 0.54053
          - type: mrr_at_5
            value: 0.55556
          - type: ndcg_at_1
            value: 0.45923
          - type: ndcg_at_10
            value: 0.57667
          - type: ndcg_at_100
            value: 0.62373
          - type: ndcg_at_1000
            value: 0.6368
          - type: ndcg_at_3
            value: 0.51843
          - type: ndcg_at_5
            value: 0.54257
          - type: precision_at_1
            value: 0.45923
          - type: precision_at_10
            value: 0.11316
          - type: precision_at_100
            value: 0.01705
          - type: precision_at_1000
            value: 0.00216
          - type: precision_at_3
            value: 0.2537
          - type: precision_at_5
            value: 0.1814
          - type: recall_at_1
            value: 0.36964
          - type: recall_at_10
            value: 0.71234
          - type: recall_at_100
            value: 0.90421
          - type: recall_at_1000
            value: 0.98296
          - type: recall_at_3
            value: 0.53655
          - type: recall_at_5
            value: 0.60996
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackEnglishRetrieval
          type: mteb/cqadupstack-english
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.36198
          - type: map_at_10
            value: 0.49199
          - type: map_at_100
            value: 0.50602
          - type: map_at_1000
            value: 0.50736
          - type: map_at_3
            value: 0.45678
          - type: map_at_5
            value: 0.47605
          - type: mrr_at_1
            value: 0.45478
          - type: mrr_at_10
            value: 0.55075
          - type: mrr_at_100
            value: 0.55656
          - type: mrr_at_1000
            value: 0.55688
          - type: mrr_at_3
            value: 0.52887
          - type: mrr_at_5
            value: 0.54282
          - type: ndcg_at_1
            value: 0.45478
          - type: ndcg_at_10
            value: 0.55505
          - type: ndcg_at_100
            value: 0.59606
          - type: ndcg_at_1000
            value: 0.61255
          - type: ndcg_at_3
            value: 0.51124
          - type: ndcg_at_5
            value: 0.53166
          - type: precision_at_1
            value: 0.45478
          - type: precision_at_10
            value: 0.10752
          - type: precision_at_100
            value: 0.01666
          - type: precision_at_1000
            value: 0.00211
          - type: precision_at_3
            value: 0.25053
          - type: precision_at_5
            value: 0.17694
          - type: recall_at_1
            value: 0.36198
          - type: recall_at_10
            value: 0.66465
          - type: recall_at_100
            value: 0.83632
          - type: recall_at_1000
            value: 0.93276
          - type: recall_at_3
            value: 0.53207
          - type: recall_at_5
            value: 0.59169
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackGamingRetrieval
          type: mteb/cqadupstack-gaming
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.44157
          - type: map_at_10
            value: 0.57753
          - type: map_at_100
            value: 0.58698
          - type: map_at_1000
            value: 0.5874
          - type: map_at_3
            value: 0.54223
          - type: map_at_5
            value: 0.56307
          - type: mrr_at_1
            value: 0.50094
          - type: mrr_at_10
            value: 0.607
          - type: mrr_at_100
            value: 0.6126
          - type: mrr_at_1000
            value: 0.6128
          - type: mrr_at_3
            value: 0.58265
          - type: mrr_at_5
            value: 0.59817
          - type: ndcg_at_1
            value: 0.50094
          - type: ndcg_at_10
            value: 0.63641
          - type: ndcg_at_100
            value: 0.67055
          - type: ndcg_at_1000
            value: 0.67855
          - type: ndcg_at_3
            value: 0.58022
          - type: ndcg_at_5
            value: 0.6097
          - type: precision_at_1
            value: 0.50094
          - type: precision_at_10
            value: 0.10182
          - type: precision_at_100
            value: 0.01278
          - type: precision_at_1000
            value: 0.00138
          - type: precision_at_3
            value: 0.2581
          - type: precision_at_5
            value: 0.17755
          - type: recall_at_1
            value: 0.44157
          - type: recall_at_10
            value: 0.7778
          - type: recall_at_100
            value: 0.92244
          - type: recall_at_1000
            value: 0.9781
          - type: recall_at_3
            value: 0.63087
          - type: recall_at_5
            value: 0.70172
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackGisRetrieval
          type: mteb/cqadupstack-gis
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.29532
          - type: map_at_10
            value: 0.40214
          - type: map_at_100
            value: 0.41289
          - type: map_at_1000
            value: 0.41359
          - type: map_at_3
            value: 0.37086
          - type: map_at_5
            value: 0.38889
          - type: mrr_at_1
            value: 0.3209
          - type: mrr_at_10
            value: 0.42423
          - type: mrr_at_100
            value: 0.43342
          - type: mrr_at_1000
            value: 0.43395
          - type: mrr_at_3
            value: 0.39736
          - type: mrr_at_5
            value: 0.41307
          - type: ndcg_at_1
            value: 0.3209
          - type: ndcg_at_10
            value: 0.46075
          - type: ndcg_at_100
            value: 0.5103
          - type: ndcg_at_1000
            value: 0.52668
          - type: ndcg_at_3
            value: 0.40149
          - type: ndcg_at_5
            value: 0.43111
          - type: precision_at_1
            value: 0.3209
          - type: precision_at_10
            value: 0.07141
          - type: precision_at_100
            value: 0.01018
          - type: precision_at_1000
            value: 0.00118
          - type: precision_at_3
            value: 0.17175
          - type: precision_at_5
            value: 0.12068
          - type: recall_at_1
            value: 0.29532
          - type: recall_at_10
            value: 0.62025
          - type: recall_at_100
            value: 0.83829
          - type: recall_at_1000
            value: 0.95995
          - type: recall_at_3
            value: 0.4603
          - type: recall_at_5
            value: 0.53089
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackMathematicaRetrieval
          type: mteb/cqadupstack-mathematica
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.18944
          - type: map_at_10
            value: 0.29611
          - type: map_at_100
            value: 0.31063
          - type: map_at_1000
            value: 0.31174
          - type: map_at_3
            value: 0.26098
          - type: map_at_5
            value: 0.28151
          - type: mrr_at_1
            value: 0.23756
          - type: mrr_at_10
            value: 0.34491
          - type: mrr_at_100
            value: 0.35457
          - type: mrr_at_1000
            value: 0.35512
          - type: mrr_at_3
            value: 0.3126
          - type: mrr_at_5
            value: 0.3317
          - type: ndcg_at_1
            value: 0.23756
          - type: ndcg_at_10
            value: 0.36015
          - type: ndcg_at_100
            value: 0.42175
          - type: ndcg_at_1000
            value: 0.44607
          - type: ndcg_at_3
            value: 0.29725
          - type: ndcg_at_5
            value: 0.32879
          - type: precision_at_1
            value: 0.23756
          - type: precision_at_10
            value: 0.06928
          - type: precision_at_100
            value: 0.01153
          - type: precision_at_1000
            value: 0.00149
          - type: precision_at_3
            value: 0.14635
          - type: precision_at_5
            value: 0.1107
          - type: recall_at_1
            value: 0.18944
          - type: recall_at_10
            value: 0.50691
          - type: recall_at_100
            value: 0.76503
          - type: recall_at_1000
            value: 0.93624
          - type: recall_at_3
            value: 0.33611
          - type: recall_at_5
            value: 0.41427
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackPhysicsRetrieval
          type: mteb/cqadupstack-physics
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.33824
          - type: map_at_10
            value: 0.46868
          - type: map_at_100
            value: 0.48306
          - type: map_at_1000
            value: 0.48406
          - type: map_at_3
            value: 0.43335
          - type: map_at_5
            value: 0.45279
          - type: mrr_at_1
            value: 0.42348
          - type: mrr_at_10
            value: 0.52972
          - type: mrr_at_100
            value: 0.53707
          - type: mrr_at_1000
            value: 0.53734
          - type: mrr_at_3
            value: 0.50722
          - type: mrr_at_5
            value: 0.52012
          - type: ndcg_at_1
            value: 0.42348
          - type: ndcg_at_10
            value: 0.53504
          - type: ndcg_at_100
            value: 0.58899
          - type: ndcg_at_1000
            value: 0.60323
          - type: ndcg_at_3
            value: 0.48478
          - type: ndcg_at_5
            value: 0.5079
          - type: precision_at_1
            value: 0.42348
          - type: precision_at_10
            value: 0.0975
          - type: precision_at_100
            value: 0.01466
          - type: precision_at_1000
            value: 0.00177
          - type: precision_at_3
            value: 0.23741
          - type: precision_at_5
            value: 0.16439
          - type: recall_at_1
            value: 0.33824
          - type: recall_at_10
            value: 0.67142
          - type: recall_at_100
            value: 0.89134
          - type: recall_at_1000
            value: 0.97816
          - type: recall_at_3
            value: 0.52305
          - type: recall_at_5
            value: 0.58804
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackProgrammersRetrieval
          type: mteb/cqadupstack-programmers
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.30125
          - type: map_at_10
            value: 0.42119
          - type: map_at_100
            value: 0.43599
          - type: map_at_1000
            value: 0.4369
          - type: map_at_3
            value: 0.38018
          - type: map_at_5
            value: 0.40368
          - type: mrr_at_1
            value: 0.37557
          - type: mrr_at_10
            value: 0.47573
          - type: mrr_at_100
            value: 0.4846
          - type: mrr_at_1000
            value: 0.48499
          - type: mrr_at_3
            value: 0.44654
          - type: mrr_at_5
            value: 0.4644
          - type: ndcg_at_1
            value: 0.37557
          - type: ndcg_at_10
            value: 0.48743
          - type: ndcg_at_100
            value: 0.54458
          - type: ndcg_at_1000
            value: 0.56076
          - type: ndcg_at_3
            value: 0.42573
          - type: ndcg_at_5
            value: 0.45528
          - type: precision_at_1
            value: 0.37557
          - type: precision_at_10
            value: 0.09269
          - type: precision_at_100
            value: 0.01401
          - type: precision_at_1000
            value: 0.0017
          - type: precision_at_3
            value: 0.20624
          - type: precision_at_5
            value: 0.15068
          - type: recall_at_1
            value: 0.30125
          - type: recall_at_10
            value: 0.62619
          - type: recall_at_100
            value: 0.86574
          - type: recall_at_1000
            value: 0.97102
          - type: recall_at_3
            value: 0.45437
          - type: recall_at_5
            value: 0.53197
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackStatsRetrieval
          type: mteb/cqadupstack-stats
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.29193
          - type: map_at_10
            value: 0.37529
          - type: map_at_100
            value: 0.38614
          - type: map_at_1000
            value: 0.38714
          - type: map_at_3
            value: 0.34897
          - type: map_at_5
            value: 0.36273
          - type: mrr_at_1
            value: 0.32669
          - type: mrr_at_10
            value: 0.40288
          - type: mrr_at_100
            value: 0.41177
          - type: mrr_at_1000
            value: 0.41241
          - type: mrr_at_3
            value: 0.38037
          - type: mrr_at_5
            value: 0.39195
          - type: ndcg_at_1
            value: 0.32669
          - type: ndcg_at_10
            value: 0.42353
          - type: ndcg_at_100
            value: 0.47424
          - type: ndcg_at_1000
            value: 0.4959
          - type: ndcg_at_3
            value: 0.37604
          - type: ndcg_at_5
            value: 0.39682
          - type: precision_at_1
            value: 0.32669
          - type: precision_at_10
            value: 0.06871
          - type: precision_at_100
            value: 0.01008
          - type: precision_at_1000
            value: 0.00126
          - type: precision_at_3
            value: 0.16309
          - type: precision_at_5
            value: 0.11288
          - type: recall_at_1
            value: 0.29193
          - type: recall_at_10
            value: 0.54159
          - type: recall_at_100
            value: 0.77267
          - type: recall_at_1000
            value: 0.92805
          - type: recall_at_3
            value: 0.41014
          - type: recall_at_5
            value: 0.46248
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackTexRetrieval
          type: mteb/cqadupstack-tex
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.21217
          - type: map_at_10
            value: 0.30848
          - type: map_at_100
            value: 0.32173
          - type: map_at_1000
            value: 0.32296
          - type: map_at_3
            value: 0.27882
          - type: map_at_5
            value: 0.29537
          - type: mrr_at_1
            value: 0.25946
          - type: mrr_at_10
            value: 0.35091
          - type: mrr_at_100
            value: 0.36047
          - type: mrr_at_1000
            value: 0.36111
          - type: mrr_at_3
            value: 0.32485
          - type: mrr_at_5
            value: 0.33964
          - type: ndcg_at_1
            value: 0.25946
          - type: ndcg_at_10
            value: 0.3655
          - type: ndcg_at_100
            value: 0.42328
          - type: ndcg_at_1000
            value: 0.44783
          - type: ndcg_at_3
            value: 0.31463
          - type: ndcg_at_5
            value: 0.33803
          - type: precision_at_1
            value: 0.25946
          - type: precision_at_10
            value: 0.06793
          - type: precision_at_100
            value: 0.01138
          - type: precision_at_1000
            value: 0.00155
          - type: precision_at_3
            value: 0.1513
          - type: precision_at_5
            value: 0.10991
          - type: recall_at_1
            value: 0.21217
          - type: recall_at_10
            value: 0.49327
          - type: recall_at_100
            value: 0.7472
          - type: recall_at_1000
            value: 0.91637
          - type: recall_at_3
            value: 0.34993
          - type: recall_at_5
            value: 0.41029
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackUnixRetrieval
          type: mteb/cqadupstack-unix
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.34303
          - type: map_at_10
            value: 0.45312
          - type: map_at_100
            value: 0.46563
          - type: map_at_1000
            value: 0.4664
          - type: map_at_3
            value: 0.4143
          - type: map_at_5
            value: 0.43633
          - type: mrr_at_1
            value: 0.40112
          - type: mrr_at_10
            value: 0.49097
          - type: mrr_at_100
            value: 0.49966
          - type: mrr_at_1000
            value: 0.50006
          - type: mrr_at_3
            value: 0.46129
          - type: mrr_at_5
            value: 0.47901
          - type: ndcg_at_1
            value: 0.40112
          - type: ndcg_at_10
            value: 0.513
          - type: ndcg_at_100
            value: 0.56534
          - type: ndcg_at_1000
            value: 0.58048
          - type: ndcg_at_3
            value: 0.4491
          - type: ndcg_at_5
            value: 0.48048
          - type: precision_at_1
            value: 0.40112
          - type: precision_at_10
            value: 0.08806
          - type: precision_at_100
            value: 0.01266
          - type: precision_at_1000
            value: 0.00149
          - type: precision_at_3
            value: 0.20211
          - type: precision_at_5
            value: 0.14496
          - type: recall_at_1
            value: 0.34303
          - type: recall_at_10
            value: 0.65508
          - type: recall_at_100
            value: 0.8753
          - type: recall_at_1000
            value: 0.9742
          - type: recall_at_3
            value: 0.48465
          - type: recall_at_5
            value: 0.56374
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackWebmastersRetrieval
          type: mteb/cqadupstack-webmasters
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.30312
          - type: map_at_10
            value: 0.40931
          - type: map_at_100
            value: 0.42893
          - type: map_at_1000
            value: 0.4312
          - type: map_at_3
            value: 0.37527
          - type: map_at_5
            value: 0.3936
          - type: mrr_at_1
            value: 0.36364
          - type: mrr_at_10
            value: 0.45677
          - type: mrr_at_100
            value: 0.46753
          - type: mrr_at_1000
            value: 0.46787
          - type: mrr_at_3
            value: 0.42918
          - type: mrr_at_5
            value: 0.4443
          - type: ndcg_at_1
            value: 0.36364
          - type: ndcg_at_10
            value: 0.47301
          - type: ndcg_at_100
            value: 0.53698
          - type: ndcg_at_1000
            value: 0.55503
          - type: ndcg_at_3
            value: 0.41875
          - type: ndcg_at_5
            value: 0.44316
          - type: precision_at_1
            value: 0.36364
          - type: precision_at_10
            value: 0.09032
          - type: precision_at_100
            value: 0.01806
          - type: precision_at_1000
            value: 0.00258
          - type: precision_at_3
            value: 0.19499
          - type: precision_at_5
            value: 0.1415
          - type: recall_at_1
            value: 0.30312
          - type: recall_at_10
            value: 0.59418
          - type: recall_at_100
            value: 0.8656
          - type: recall_at_1000
            value: 0.97412
          - type: recall_at_3
            value: 0.44251
          - type: recall_at_5
            value: 0.50457
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackWordpressRetrieval
          type: mteb/cqadupstack-wordpress
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.23851
          - type: map_at_10
            value: 0.33429
          - type: map_at_100
            value: 0.34482
          - type: map_at_1000
            value: 0.3457
          - type: map_at_3
            value: 0.30271
          - type: map_at_5
            value: 0.31905
          - type: mrr_at_1
            value: 0.25693
          - type: mrr_at_10
            value: 0.35383
          - type: mrr_at_100
            value: 0.36295
          - type: mrr_at_1000
            value: 0.36346
          - type: mrr_at_3
            value: 0.32532
          - type: mrr_at_5
            value: 0.3402
          - type: ndcg_at_1
            value: 0.25693
          - type: ndcg_at_10
            value: 0.39196
          - type: ndcg_at_100
            value: 0.44501
          - type: ndcg_at_1000
            value: 0.46482
          - type: ndcg_at_3
            value: 0.33
          - type: ndcg_at_5
            value: 0.35736
          - type: precision_at_1
            value: 0.25693
          - type: precision_at_10
            value: 0.06433
          - type: precision_at_100
            value: 0.00989
          - type: precision_at_1000
            value: 0.00128
          - type: precision_at_3
            value: 0.14295
          - type: precision_at_5
            value: 0.10277
          - type: recall_at_1
            value: 0.23851
          - type: recall_at_10
            value: 0.55036
          - type: recall_at_100
            value: 0.79592
          - type: recall_at_1000
            value: 0.94283
          - type: recall_at_3
            value: 0.38435
          - type: recall_at_5
            value: 0.44872
      - task:
          type: Retrieval
        dataset:
          name: MTEB DBPedia
          type: mteb/dbpedia
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.0871
          - type: map_at_10
            value: 0.19218
          - type: map_at_100
            value: 0.26291
          - type: map_at_1000
            value: 0.27985
          - type: map_at_3
            value: 0.13974
          - type: map_at_5
            value: 0.16104
          - type: mrr_at_1
            value: 0.6725
          - type: mrr_at_10
            value: 0.75037
          - type: mrr_at_100
            value: 0.75318
          - type: mrr_at_1000
            value: 0.75325
          - type: mrr_at_3
            value: 0.73833
          - type: mrr_at_5
            value: 0.74308
          - type: ndcg_at_1
            value: 0.54375
          - type: ndcg_at_10
            value: 0.39409
          - type: ndcg_at_100
            value: 0.44382
          - type: ndcg_at_1000
            value: 0.52485
          - type: ndcg_at_3
            value: 0.44463
          - type: ndcg_at_5
            value: 0.41276
          - type: precision_at_1
            value: 0.6725
          - type: precision_at_10
            value: 0.3055
          - type: precision_at_100
            value: 0.09588
          - type: precision_at_1000
            value: 0.02118
          - type: precision_at_3
            value: 0.48167
          - type: precision_at_5
            value: 0.394
          - type: recall_at_1
            value: 0.0871
          - type: recall_at_10
            value: 0.2527
          - type: recall_at_100
            value: 0.5185
          - type: recall_at_1000
            value: 0.76491
          - type: recall_at_3
            value: 0.15516
          - type: recall_at_5
            value: 0.18907
      - task:
          type: Retrieval
        dataset:
          name: MTEB FEVER
          type: mteb/fever
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.78993
          - type: map_at_10
            value: 0.8502
          - type: map_at_100
            value: 0.85186
          - type: map_at_1000
            value: 0.852
          - type: map_at_3
            value: 0.8437
          - type: map_at_5
            value: 0.84812
          - type: mrr_at_1
            value: 0.85179
          - type: mrr_at_10
            value: 0.90744
          - type: mrr_at_100
            value: 0.90799
          - type: mrr_at_1000
            value: 0.90801
          - type: mrr_at_3
            value: 0.90322
          - type: mrr_at_5
            value: 0.90622
          - type: ndcg_at_1
            value: 0.85179
          - type: ndcg_at_10
            value: 0.88229
          - type: ndcg_at_100
            value: 0.8884
          - type: ndcg_at_1000
            value: 0.89116
          - type: ndcg_at_3
            value: 0.87304
          - type: ndcg_at_5
            value: 0.87862
          - type: precision_at_1
            value: 0.85179
          - type: precision_at_10
            value: 0.10129
          - type: precision_at_100
            value: 0.0106
          - type: precision_at_1000
            value: 0.0011
          - type: precision_at_3
            value: 0.32543
          - type: precision_at_5
            value: 0.19931
          - type: recall_at_1
            value: 0.78993
          - type: recall_at_10
            value: 0.92685
          - type: recall_at_100
            value: 0.9516
          - type: recall_at_1000
            value: 0.96943
          - type: recall_at_3
            value: 0.89965
          - type: recall_at_5
            value: 0.91562
      - task:
          type: Retrieval
        dataset:
          name: MTEB FiQA2018
          type: mteb/fiqa
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.22586
          - type: map_at_10
            value: 0.36836
          - type: map_at_100
            value: 0.38863
          - type: map_at_1000
            value: 0.39041
          - type: map_at_3
            value: 0.32445
          - type: map_at_5
            value: 0.34951
          - type: mrr_at_1
            value: 0.44599
          - type: mrr_at_10
            value: 0.53471
          - type: mrr_at_100
            value: 0.54186
          - type: mrr_at_1000
            value: 0.54223
          - type: mrr_at_3
            value: 0.51157
          - type: mrr_at_5
            value: 0.52423
          - type: ndcg_at_1
            value: 0.44599
          - type: ndcg_at_10
            value: 0.44931
          - type: ndcg_at_100
            value: 0.51914
          - type: ndcg_at_1000
            value: 0.54674
          - type: ndcg_at_3
            value: 0.41597
          - type: ndcg_at_5
            value: 0.42611
          - type: precision_at_1
            value: 0.44599
          - type: precision_at_10
            value: 0.12346
          - type: precision_at_100
            value: 0.01951
          - type: precision_at_1000
            value: 0.00244
          - type: precision_at_3
            value: 0.27623
          - type: precision_at_5
            value: 0.20093
          - type: recall_at_1
            value: 0.22586
          - type: recall_at_10
            value: 0.5152
          - type: recall_at_100
            value: 0.77251
          - type: recall_at_1000
            value: 0.93503
          - type: recall_at_3
            value: 0.37802
          - type: recall_at_5
            value: 0.4386
      - task:
          type: Retrieval
        dataset:
          name: MTEB HotpotQA
          type: mteb/hotpotqa
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.38177
          - type: map_at_10
            value: 0.59021
          - type: map_at_100
            value: 0.59924
          - type: map_at_1000
            value: 0.59989
          - type: map_at_3
            value: 0.55553
          - type: map_at_5
            value: 0.57773
          - type: mrr_at_1
            value: 0.76354
          - type: mrr_at_10
            value: 0.827
          - type: mrr_at_100
            value: 0.82887
          - type: mrr_at_1000
            value: 0.82896
          - type: mrr_at_3
            value: 0.8172
          - type: mrr_at_5
            value: 0.82338
          - type: ndcg_at_1
            value: 0.76354
          - type: ndcg_at_10
            value: 0.67775
          - type: ndcg_at_100
            value: 0.70849
          - type: ndcg_at_1000
            value: 0.7215
          - type: ndcg_at_3
            value: 0.629
          - type: ndcg_at_5
            value: 0.65679
          - type: precision_at_1
            value: 0.76354
          - type: precision_at_10
            value: 0.14176
          - type: precision_at_100
            value: 0.01656
          - type: precision_at_1000
            value: 0.00183
          - type: precision_at_3
            value: 0.40113
          - type: precision_at_5
            value: 0.26255
          - type: recall_at_1
            value: 0.38177
          - type: recall_at_10
            value: 0.70878
          - type: recall_at_100
            value: 0.82822
          - type: recall_at_1000
            value: 0.91472
          - type: recall_at_3
            value: 0.60169
          - type: recall_at_5
            value: 0.65638
      - task:
          type: Retrieval
        dataset:
          name: MTEB MSMARCO
          type: mteb/msmarco
          config: default
          split: dev
        metrics:
          - type: map_at_1
            value: 0.15062
          - type: map_at_10
            value: 0.26008
          - type: map_at_100
            value: 0.27305
          - type: map_at_1000
            value: 0.27373
          - type: map_at_3
            value: 0.22236
          - type: map_at_5
            value: 0.24362
          - type: mrr_at_1
            value: 0.15444
          - type: mrr_at_10
            value: 0.26458
          - type: mrr_at_100
            value: 0.27718
          - type: mrr_at_1000
            value: 0.2778
          - type: mrr_at_3
            value: 0.22701
          - type: mrr_at_5
            value: 0.24844
          - type: ndcg_at_1
            value: 0.15444
          - type: ndcg_at_10
            value: 0.32495
          - type: ndcg_at_100
            value: 0.38957
          - type: ndcg_at_1000
            value: 0.40684
          - type: ndcg_at_3
            value: 0.24745
          - type: ndcg_at_5
            value: 0.2856
          - type: precision_at_1
            value: 0.15444
          - type: precision_at_10
            value: 0.05486
          - type: precision_at_100
            value: 0.00875
          - type: precision_at_1000
            value: 0.00102
          - type: precision_at_3
            value: 0.1086
          - type: precision_at_5
            value: 0.08441
          - type: recall_at_1
            value: 0.15062
          - type: recall_at_10
            value: 0.5272
          - type: recall_at_100
            value: 0.83006
          - type: recall_at_1000
            value: 0.96263
          - type: recall_at_3
            value: 0.31556
          - type: recall_at_5
            value: 0.40706
      - task:
          type: Retrieval
        dataset:
          name: MTEB NFCorpus
          type: mteb/nfcorpus
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.06126
          - type: map_at_10
            value: 0.14152
          - type: map_at_100
            value: 0.1827
          - type: map_at_1000
            value: 0.1988
          - type: map_at_3
            value: 0.10301
          - type: map_at_5
            value: 0.12085
          - type: mrr_at_1
            value: 0.47988
          - type: mrr_at_10
            value: 0.5692
          - type: mrr_at_100
            value: 0.57428
          - type: mrr_at_1000
            value: 0.57482
          - type: mrr_at_3
            value: 0.55315
          - type: mrr_at_5
            value: 0.56352
          - type: ndcg_at_1
            value: 0.45356
          - type: ndcg_at_10
            value: 0.3725
          - type: ndcg_at_100
            value: 0.34496
          - type: ndcg_at_1000
            value: 0.43374
          - type: ndcg_at_3
            value: 0.42643
          - type: ndcg_at_5
            value: 0.40882
          - type: precision_at_1
            value: 0.47368
          - type: precision_at_10
            value: 0.2774
          - type: precision_at_100
            value: 0.09071
          - type: precision_at_1000
            value: 0.02226
          - type: precision_at_3
            value: 0.40144
          - type: precision_at_5
            value: 0.35913
          - type: recall_at_1
            value: 0.06126
          - type: recall_at_10
            value: 0.18427
          - type: recall_at_100
            value: 0.35018
          - type: recall_at_1000
            value: 0.6766
          - type: recall_at_3
            value: 0.11706
          - type: recall_at_5
            value: 0.14419
      - task:
          type: Retrieval
        dataset:
          name: MTEB NQ
          type: mteb/nq
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.33053
          - type: map_at_10
            value: 0.49739
          - type: map_at_100
            value: 0.50626
          - type: map_at_1000
            value: 0.50647
          - type: map_at_3
            value: 0.4491
          - type: map_at_5
            value: 0.4783
          - type: mrr_at_1
            value: 0.37254
          - type: mrr_at_10
            value: 0.52222
          - type: mrr_at_100
            value: 0.52855
          - type: mrr_at_1000
            value: 0.52869
          - type: mrr_at_3
            value: 0.48445
          - type: mrr_at_5
            value: 0.50834
          - type: ndcg_at_1
            value: 0.37254
          - type: ndcg_at_10
            value: 0.58044
          - type: ndcg_at_100
            value: 0.61613
          - type: ndcg_at_1000
            value: 0.62046
          - type: ndcg_at_3
            value: 0.49219
          - type: ndcg_at_5
            value: 0.54037
          - type: precision_at_1
            value: 0.37254
          - type: precision_at_10
            value: 0.09655
          - type: precision_at_100
            value: 0.01167
          - type: precision_at_1000
            value: 0.00121
          - type: precision_at_3
            value: 0.22538
          - type: precision_at_5
            value: 0.16344
          - type: recall_at_1
            value: 0.33053
          - type: recall_at_10
            value: 0.8076
          - type: recall_at_100
            value: 0.95862
          - type: recall_at_1000
            value: 0.99044
          - type: recall_at_3
            value: 0.58157
          - type: recall_at_5
            value: 0.69235
      - task:
          type: Retrieval
        dataset:
          name: MTEB QuoraRetrieval
          type: mteb/quora
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.70056
          - type: map_at_10
            value: 0.84009
          - type: map_at_100
            value: 0.84661
          - type: map_at_1000
            value: 0.84678
          - type: map_at_3
            value: 0.81036
          - type: map_at_5
            value: 0.82923
          - type: mrr_at_1
            value: 0.8062
          - type: mrr_at_10
            value: 0.86971
          - type: mrr_at_100
            value: 0.87079
          - type: mrr_at_1000
            value: 0.8708
          - type: mrr_at_3
            value: 0.85943
          - type: mrr_at_5
            value: 0.86664
          - type: ndcg_at_1
            value: 0.8064
          - type: ndcg_at_10
            value: 0.87821
          - type: ndcg_at_100
            value: 0.89091
          - type: ndcg_at_1000
            value: 0.89202
          - type: ndcg_at_3
            value: 0.849
          - type: ndcg_at_5
            value: 0.86544
          - type: precision_at_1
            value: 0.8064
          - type: precision_at_10
            value: 0.13347
          - type: precision_at_100
            value: 0.01527
          - type: precision_at_1000
            value: 0.00157
          - type: precision_at_3
            value: 0.37153
          - type: precision_at_5
            value: 0.2448
          - type: recall_at_1
            value: 0.70056
          - type: recall_at_10
            value: 0.95148
          - type: recall_at_100
            value: 0.99474
          - type: recall_at_1000
            value: 0.99977
          - type: recall_at_3
            value: 0.86773
          - type: recall_at_5
            value: 0.91396
      - task:
          type: Retrieval
        dataset:
          name: MTEB SCIDOCS
          type: mteb/scidocs
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.05737
          - type: map_at_10
            value: 0.14896
          - type: map_at_100
            value: 0.17646
          - type: map_at_1000
            value: 0.1803
          - type: map_at_3
            value: 0.10474
          - type: map_at_5
            value: 0.12656
          - type: mrr_at_1
            value: 0.281
          - type: mrr_at_10
            value: 0.39579
          - type: mrr_at_100
            value: 0.40687
          - type: mrr_at_1000
            value: 0.40722
          - type: mrr_at_3
            value: 0.35917
          - type: mrr_at_5
            value: 0.38097
          - type: ndcg_at_1
            value: 0.281
          - type: ndcg_at_10
            value: 0.24146
          - type: ndcg_at_100
            value: 0.339
          - type: ndcg_at_1000
            value: 0.39728
          - type: ndcg_at_3
            value: 0.22721
          - type: ndcg_at_5
            value: 0.20015
          - type: precision_at_1
            value: 0.281
          - type: precision_at_10
            value: 0.1254
          - type: precision_at_100
            value: 0.02651
          - type: precision_at_1000
            value: 0.00404
          - type: precision_at_3
            value: 0.212
          - type: precision_at_5
            value: 0.176
          - type: recall_at_1
            value: 0.05737
          - type: recall_at_10
            value: 0.254
          - type: recall_at_100
            value: 0.53772
          - type: recall_at_1000
            value: 0.82013
          - type: recall_at_3
            value: 0.12897
          - type: recall_at_5
            value: 0.17855
      - task:
          type: Retrieval
        dataset:
          name: MTEB SciFact
          type: mteb/scifact
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.60011
          - type: map_at_10
            value: 0.70101
          - type: map_at_100
            value: 0.70687
          - type: map_at_1000
            value: 0.70699
          - type: map_at_3
            value: 0.67135
          - type: map_at_5
            value: 0.6878
          - type: mrr_at_1
            value: 0.62667
          - type: mrr_at_10
            value: 0.71022
          - type: mrr_at_100
            value: 0.71484
          - type: mrr_at_1000
            value: 0.71496
          - type: mrr_at_3
            value: 0.68944
          - type: mrr_at_5
            value: 0.69961
          - type: ndcg_at_1
            value: 0.62667
          - type: ndcg_at_10
            value: 0.7472
          - type: ndcg_at_100
            value: 0.76961
          - type: ndcg_at_1000
            value: 0.77294
          - type: ndcg_at_3
            value: 0.69776
          - type: ndcg_at_5
            value: 0.71964
          - type: precision_at_1
            value: 0.62667
          - type: precision_at_10
            value: 0.09933
          - type: precision_at_100
            value: 0.01103
          - type: precision_at_1000
            value: 0.00113
          - type: precision_at_3
            value: 0.27
          - type: precision_at_5
            value: 0.178
          - type: recall_at_1
            value: 0.60011
          - type: recall_at_10
            value: 0.878
          - type: recall_at_100
            value: 0.97333
          - type: recall_at_1000
            value: 1
          - type: recall_at_3
            value: 0.74839
          - type: recall_at_5
            value: 0.80028
      - task:
          type: Retrieval
        dataset:
          name: MTEB Touche2020
          type: mteb/touche2020
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.02152
          - type: map_at_10
            value: 0.07747
          - type: map_at_100
            value: 0.1364
          - type: map_at_1000
            value: 0.15235
          - type: map_at_3
            value: 0.04103
          - type: map_at_5
            value: 0.05482
          - type: mrr_at_1
            value: 0.26531
          - type: mrr_at_10
            value: 0.41399
          - type: mrr_at_100
            value: 0.43047
          - type: mrr_at_1000
            value: 0.43047
          - type: mrr_at_3
            value: 0.38776
          - type: mrr_at_5
            value: 0.40612
          - type: ndcg_at_1
            value: 0.23469
          - type: ndcg_at_10
            value: 0.20147
          - type: ndcg_at_100
            value: 0.3279
          - type: ndcg_at_1000
            value: 0.45324
          - type: ndcg_at_3
            value: 0.22555
          - type: ndcg_at_5
            value: 0.2097
          - type: precision_at_1
            value: 0.26531
          - type: precision_at_10
            value: 0.17755
          - type: precision_at_100
            value: 0.07082
          - type: precision_at_1000
            value: 0.01547
          - type: precision_at_3
            value: 0.2449
          - type: precision_at_5
            value: 0.21633
          - type: recall_at_1
            value: 0.02152
          - type: recall_at_10
            value: 0.13331
          - type: recall_at_100
            value: 0.4535
          - type: recall_at_1000
            value: 0.83447
          - type: recall_at_3
            value: 0.05531
          - type: recall_at_5
            value: 0.08029
      - task:
          type: Retrieval
        dataset:
          name: MTEB TRECCOVID
          type: mteb/trec-covid
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.00202
          - type: map_at_10
            value: 0.01727
          - type: map_at_100
            value: 0.10906
          - type: map_at_1000
            value: 0.2894
          - type: map_at_3
            value: 0.00553
          - type: map_at_5
            value: 0.00924
          - type: mrr_at_1
            value: 0.74
          - type: mrr_at_10
            value: 0.85667
          - type: mrr_at_100
            value: 0.85667
          - type: mrr_at_1000
            value: 0.85667
          - type: mrr_at_3
            value: 0.85667
          - type: mrr_at_5
            value: 0.85667
          - type: ndcg_at_1
            value: 0.66
          - type: ndcg_at_10
            value: 0.69259
          - type: ndcg_at_100
            value: 0.57274
          - type: ndcg_at_1000
            value: 0.55462
          - type: ndcg_at_3
            value: 0.70654
          - type: ndcg_at_5
            value: 0.71611
          - type: precision_at_1
            value: 0.74
          - type: precision_at_10
            value: 0.748
          - type: precision_at_100
            value: 0.5962
          - type: precision_at_1000
            value: 0.24842
          - type: precision_at_3
            value: 0.77333
          - type: precision_at_5
            value: 0.788
          - type: recall_at_1
            value: 0.00202
          - type: recall_at_10
            value: 0.02001
          - type: recall_at_100
            value: 0.14801
          - type: recall_at_1000
            value: 0.53939
          - type: recall_at_3
            value: 0.00609
          - type: recall_at_5
            value: 0.01048

Llamacpp Static Quantizations of granite-embedding-125m-english

Using llama.cpp release b4341 for quantization.

Original model: https://huggingface.co/ibm-granite/granite-embedding-125m-english

Run them in LM Studio

Prompt format

No prompt format found, check original model page

Download a file (not the whole branch) from below:

Filename Quant type File Size Split Description
granite-embedding-125m-english-f16.gguf f16 0.25GB false Full F16 weights.
granite-embedding-125m-english-Q8_0.gguf Q8_0 0.13GB false Extremely high quality, generally unneeded but max available quant.
granite-embedding-125m-english-Q6_K_L.gguf Q6_K_L 0.11GB false Uses Q8_0 for embed and output weights. Very high quality, near perfect, recommended.
granite-embedding-125m-english-Q6_K.gguf Q6_K 0.10GB false Very high quality, near perfect, recommended.
granite-embedding-125m-english-Q5_K_L.gguf Q5_K_L 0.10GB false Uses Q8_0 for embed and output weights. High quality, recommended.
granite-embedding-125m-english-Q5_K_M.gguf Q5_K_M 0.10GB false High quality, recommended.
granite-embedding-125m-english-Q4_K_L.gguf Q4_K_L 0.10GB false Uses Q8_0 for embed and output weights. Good quality, recommended.
granite-embedding-125m-english-Q5_K_S.gguf Q5_K_S 0.09GB false High quality, recommended.
granite-embedding-125m-english-Q4_K_M.gguf Q4_K_M 0.09GB false Good quality, default size for most use cases, recommended.
granite-embedding-125m-english-Q3_K_XL.gguf Q3_K_XL 0.09GB false Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability.
granite-embedding-125m-english-Q4_K_S.gguf Q4_K_S 0.08GB false Slightly lower quality with more space savings, recommended.
granite-embedding-125m-english-Q4_0.gguf Q4_0 0.08GB false Legacy format, offers online repacking for ARM and AVX CPU inference.
granite-embedding-125m-english-IQ4_NL.gguf IQ4_NL 0.08GB false Similar to IQ4_XS, but slightly larger. Offers online repacking for ARM CPU inference.
granite-embedding-125m-english-IQ4_XS.gguf IQ4_XS 0.08GB false Decent quality, smaller than Q4_K_S with similar performance, recommended.
granite-embedding-125m-english-Q3_K_L.gguf Q3_K_L 0.08GB false Lower quality but usable, good for low RAM availability.
granite-embedding-125m-english-Q3_K_M.gguf Q3_K_M 0.08GB false Low quality.
granite-embedding-125m-english-IQ3_M.gguf IQ3_M 0.07GB false Medium-low quality, new method with decent performance comparable to Q3_K_M.

Embed/output weights

Some of these quants (Q3_K_XL, Q4_K_L etc) are the standard quantization method with the embeddings and output weights quantized to Q8_0 instead of what they would normally default to.

Downloading using huggingface-cli

Click to view download instructions

First, make sure you have hugginface-cli installed:

pip install -U "huggingface_hub[cli]"

Then, you can target the specific file you want:

huggingface-cli download bartowski/granite-embedding-125m-english-GGUF --include "granite-embedding-125m-english-Q4_K_M.gguf" --local-dir ./

If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:

huggingface-cli download bartowski/granite-embedding-125m-english-GGUF --include "granite-embedding-125m-english-Q8_0/*" --local-dir ./

You can either specify a new local-dir (granite-embedding-125m-english-Q8_0) or download them all in place (./)

ARM/AVX information

Previously, you would download Q4_0_4_4/4_8/8_8, and these would have their weights interleaved in memory in order to improve performance on ARM and AVX machines by loading up more data in one pass.

Now, however, there is something called "online repacking" for weights. details in this PR. If you use Q4_0 and your hardware would benefit from repacking weights, it will do it automatically on the fly.

As of llama.cpp build b4282 you will not be able to run the Q4_0_X_X files and will instead need to use Q4_0.

Additionally, if you want to get slightly better quality for , you can use IQ4_NL thanks to this PR which will also repack the weights for ARM, though only the 4_4 for now. The loading time may be slower but it will result in an overall speed incrase.

Click to view Q4_0_X_X information (deprecated

I'm keeping this section to show the potential theoretical uplift in performance from using the Q4_0 with online repacking.

Click to view benchmarks on an AVX2 system (EPYC7702)
model size params backend threads test t/s % (vs Q4_0)
qwen2 3B Q4_0 1.70 GiB 3.09 B CPU 64 pp512 204.03 ± 1.03 100%
qwen2 3B Q4_0 1.70 GiB 3.09 B CPU 64 pp1024 282.92 ± 0.19 100%
qwen2 3B Q4_0 1.70 GiB 3.09 B CPU 64 pp2048 259.49 ± 0.44 100%
qwen2 3B Q4_0 1.70 GiB 3.09 B CPU 64 tg128 39.12 ± 0.27 100%
qwen2 3B Q4_0 1.70 GiB 3.09 B CPU 64 tg256 39.31 ± 0.69 100%
qwen2 3B Q4_0 1.70 GiB 3.09 B CPU 64 tg512 40.52 ± 0.03 100%
qwen2 3B Q4_K_M 1.79 GiB 3.09 B CPU 64 pp512 301.02 ± 1.74 147%
qwen2 3B Q4_K_M 1.79 GiB 3.09 B CPU 64 pp1024 287.23 ± 0.20 101%
qwen2 3B Q4_K_M 1.79 GiB 3.09 B CPU 64 pp2048 262.77 ± 1.81 101%
qwen2 3B Q4_K_M 1.79 GiB 3.09 B CPU 64 tg128 18.80 ± 0.99 48%
qwen2 3B Q4_K_M 1.79 GiB 3.09 B CPU 64 tg256 24.46 ± 3.04 83%
qwen2 3B Q4_K_M 1.79 GiB 3.09 B CPU 64 tg512 36.32 ± 3.59 90%
qwen2 3B Q4_0_8_8 1.69 GiB 3.09 B CPU 64 pp512 271.71 ± 3.53 133%
qwen2 3B Q4_0_8_8 1.69 GiB 3.09 B CPU 64 pp1024 279.86 ± 45.63 100%
qwen2 3B Q4_0_8_8 1.69 GiB 3.09 B CPU 64 pp2048 320.77 ± 5.00 124%
qwen2 3B Q4_0_8_8 1.69 GiB 3.09 B CPU 64 tg128 43.51 ± 0.05 111%
qwen2 3B Q4_0_8_8 1.69 GiB 3.09 B CPU 64 tg256 43.35 ± 0.09 110%
qwen2 3B Q4_0_8_8 1.69 GiB 3.09 B CPU 64 tg512 42.60 ± 0.31 105%

Q4_0_8_8 offers a nice bump to prompt processing and a small bump to text generation

Which file should I choose?

Click here for details

A great write up with charts showing various performances is provided by Artefact2 here

The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.

If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.

If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.

Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.

If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.

If you want to get more into the weeds, you can check out this extremely useful feature chart:

llama.cpp feature matrix

But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.

These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.

The I-quants are not compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.

Credits

Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset.

Thank you ZeroWw for the inspiration to experiment with embed/output.

Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski