bartowski's picture
measurement.json
cc705ae verified
|
raw
history blame
3.73 kB
---
language:
- en
library_name: transformers
pipeline_tag: text-generation
datasets:
- jondurbin/airoboros-2.2
- Open-Orca/OpenOrca
- garage-bAInd/Open-Platypus
- WizardLM/WizardLM_evol_instruct_V2_196k
- TokenBender/python_eval_instruct_51k
- codefuse-ai/Evol-Instruction-66k
tags:
- llama-2
- code
license: llama2
model-index:
- name: SpeechlessCoder
results:
- task:
type: text-generation
dataset:
type: openai_humaneval
name: HumanEval
metrics:
- name: pass@1
type: pass@1
value:
verified: false
quantized_by: bartowski
---
## Exllama v2 Quantizations of speechless-sparsetral-mistral-16x7b-MoE
Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.13">turboderp's ExLlamaV2 v0.0.13</a> for quantization.
<b>The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)</b>
Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.
Original model: https://huggingface.co/uukuguy/speechless-sparsetral-mistral-16x7b-MoE
| Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description |
| ----- | ---- | ------- | ------ | ------ | ------ | ------------ |
| [8_0](https://huggingface.co/bartowski/speechless-sparsetral-mistral-16x7b-MoE-exl2/tree/8_0) | 8.0 | 8.0 | 8.3 GB | 9.7 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
| [6_5](https://huggingface.co/bartowski/speechless-sparsetral-mistral-16x7b-MoE-exl2/tree/6_5) | 6.5 | 8.0 | 7.1 GB | 8.5 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. |
| [5_0](https://huggingface.co/bartowski/speechless-sparsetral-mistral-16x7b-MoE-exl2/tree/5_0) | 5.0 | 6.0 | 5.7 GB | 7.1 GB | 9.2 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. |
| [4_25](https://huggingface.co/bartowski/speechless-sparsetral-mistral-16x7b-MoE-exl2/tree/4_25) | 4.25 | 6.0 | 5.1 GB | 6.5 GB | 8.6 GB | GPTQ equivalent bits per weight, slightly higher quality. |
| [3_5](https://huggingface.co/bartowski/speechless-sparsetral-mistral-16x7b-MoE-exl2/tree/3_5) | 3.5 | 6.0 | 4.4 GB | 5.8 GB | 7.9 GB | Lower quality, only use if you have to. |
## Download instructions
With git:
```shell
git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/speechless-sparsetral-mistral-16x7b-MoE-exl2 speechless-sparsetral-mistral-16x7b-MoE-exl2-6_5
```
With huggingface hub (credit to TheBloke for instructions):
```shell
pip3 install huggingface-hub
```
To download the `main` (only useful if you only care about measurement.json) branch to a folder called `speechless-sparsetral-mistral-16x7b-MoE-exl2`:
```shell
mkdir speechless-sparsetral-mistral-16x7b-MoE-exl2
huggingface-cli download bartowski/speechless-sparsetral-mistral-16x7b-MoE-exl2 --local-dir speechless-sparsetral-mistral-16x7b-MoE-exl2 --local-dir-use-symlinks False
```
To download from a different branch, add the `--revision` parameter:
Linux:
```shell
mkdir speechless-sparsetral-mistral-16x7b-MoE-exl2-6_5
huggingface-cli download bartowski/speechless-sparsetral-mistral-16x7b-MoE-exl2 --revision 6_5 --local-dir speechless-sparsetral-mistral-16x7b-MoE-exl2-6_5 --local-dir-use-symlinks False
```
Windows (which apparently doesn't like _ in folders sometimes?):
```shell
mkdir speechless-sparsetral-mistral-16x7b-MoE-exl2-6.5
huggingface-cli download bartowski/speechless-sparsetral-mistral-16x7b-MoE-exl2 --revision 6_5 --local-dir speechless-sparsetral-mistral-16x7b-MoE-exl2-6.5 --local-dir-use-symlinks False
```
Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski