metadata
language:
- en
license: mit
tags:
- generated_from_trainer
- mlx
datasets:
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized
base_model: mistralai/Mistral-7B-v0.1
widget:
- text: |
<|system|>
You are a pirate chatbot who always responds with Arr!</s>
<|user|>
There's a llama on my lawn, how can I get rid of him?</s>
<|assistant|>
output:
text: >-
Arr! 'Tis a puzzlin' matter, me hearty! A llama on yer lawn be a rare
sight, but I've got a plan that might help ye get rid of 'im. Ye'll need
to gather some carrots and hay, and then lure the llama away with the
promise of a tasty treat. Once he's gone, ye can clean up yer lawn and
enjoy the peace and quiet once again. But beware, me hearty, for there
may be more llamas where that one came from! Arr!
pipeline_tag: text-generation
model-index:
- name: zephyr-7b-beta
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 62.03071672354948
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.35570603465445
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Drop (3-Shot)
type: drop
split: validation
args:
num_few_shot: 3
metrics:
- type: f1
value: 9.66243708053691
name: f1 score
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 57.44916942762855
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 12.736921910538287
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 61.07
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.7426992896606
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: AlpacaEval
type: tatsu-lab/alpaca_eval
metrics:
- type: unknown
value: 0.906
name: win rate
source:
url: https://tatsu-lab.github.io/alpaca_eval/
- task:
type: text-generation
name: Text Generation
dataset:
name: MT-Bench
type: unknown
metrics:
- type: unknown
value: 7.34
name: score
source:
url: https://huggingface.co/spaces/lmsys/mt-bench
batmac/zephyr-7b-beta-mlx-4bit
This model was converted to MLX format from HuggingFaceH4/zephyr-7b-beta
.
Refer to the original model card for more details on the model.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("batmac/zephyr-7b-beta-mlx-4bit")
response = generate(model, tokenizer, prompt="hello", verbose=True)