whisper-small-mn-11 / README.md
bayartsogt's picture
Update metadata with huggingface_hub
04a0317
|
raw
history blame
2.97 kB
---
language: mn
license: apache-2.0
tags:
- whisper-event
- hf-asr-leaderboard
- generated_from_multiple_datasets
datasets:
- mozilla-foundation/common_voice_11_0
- google/fleurs
metrics:
- wer
- cer
model-index:
- name: whisper-small-mn-11
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: mn
split: test
metrics:
- type: wer
value: 51.96635350666375
name: Wer
- type: cer
value: 19.87703213138759
name: Cer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-mn-11
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0138
- Wer: 51.9664
- Cer: 19.8770
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 15000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:------:|:-----:|:---------------:|:-------:|:-------:|
| 0.0025 | 32.26 | 1000 | 0.8913 | 53.6214 | 20.6866 |
| 0.0007 | 64.52 | 2000 | 0.9326 | 52.1685 | 19.5991 |
| 0.0001 | 96.77 | 3000 | 1.0138 | 51.9664 | 19.8770 |
| 0.0001 | 129.03 | 4000 | 1.0639 | 52.1248 | 19.9178 |
| 0.0 | 161.29 | 5000 | 1.1236 | 52.0428 | 19.9652 |
| 0.0 | 193.55 | 6000 | 1.1677 | 52.4634 | 20.0351 |
| 0.0 | 225.81 | 7000 | 1.2224 | 52.5836 | 20.1258 |
| 0.0 | 258.06 | 8000 | 1.2633 | 52.7310 | 20.2073 |
| 0.0 | 290.32 | 9000 | 1.3152 | 52.8184 | 20.2273 |
| 0.0 | 322.58 | 10000 | 1.3530 | 52.9495 | 20.3080 |
| 0.0 | 354.84 | 11000 | 1.3995 | 53.0260 | 20.3088 |
| 0.0 | 387.1 | 12000 | 1.4306 | 52.9878 | 20.2057 |
| 0.0 | 419.35 | 13000 | 1.4674 | 52.9714 | 20.3113 |
| 0.0 | 451.61 | 14000 | 1.4859 | 52.9386 | 20.2947 |
| 0.0 | 483.87 | 15000 | 1.4994 | 52.9768 | 20.3280 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2