|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-es |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-es |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.0283 |
|
- Rouge1: 17.0616 |
|
- Rouge2: 8.1283 |
|
- Rougel: 16.6434 |
|
- Rougelsum: 16.5615 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| 6.7874 | 1.0 | 1209 | 3.3081 | 13.8568 | 5.3053 | 13.2999 | 13.2358 | |
|
| 3.9088 | 2.0 | 2418 | 3.1782 | 16.3678 | 8.6126 | 15.9378 | 15.9707 | |
|
| 3.5883 | 3.0 | 3627 | 3.1074 | 17.862 | 8.7925 | 17.2359 | 17.1558 | |
|
| 3.4174 | 4.0 | 4836 | 3.0686 | 17.2836 | 8.8083 | 16.6237 | 16.6587 | |
|
| 3.3103 | 5.0 | 6045 | 3.0487 | 16.4615 | 7.9347 | 15.9351 | 15.9312 | |
|
| 3.251 | 6.0 | 7254 | 3.0379 | 16.9982 | 8.1573 | 16.5562 | 16.5036 | |
|
| 3.2022 | 7.0 | 8463 | 3.0252 | 17.4796 | 8.4263 | 17.0159 | 16.9812 | |
|
| 3.1725 | 8.0 | 9672 | 3.0283 | 17.0616 | 8.1283 | 16.6434 | 16.5615 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|