model / README.md
bdihia's picture
bdihia/model
2ff25f5 verified
metadata
library_name: transformers
license: mit
base_model: almanach/camembert-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: model
    results: []

model

This model is a fine-tuned version of almanach/camembert-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0103
  • Precision: 0.0
  • Recall: 0.0
  • F1: 0.0
  • Accuracy: 0.9982

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 160 0.0086 0.0 0.0 0.0 0.9981
No log 2.0 320 0.0091 0.0 0.0 0.0 0.9984
No log 3.0 480 0.0101 0.0 0.0 0.0 0.9982
0.001 4.0 640 0.0093 0.0 0.0 0.0 0.9984
0.001 5.0 800 0.0094 0.0 0.0 0.0 0.9980
0.001 6.0 960 0.0091 0.0 0.0 0.0 0.9983
0.0007 7.0 1120 0.0102 0.0 0.0 0.0 0.9984
0.0007 8.0 1280 0.0108 0.0 0.0 0.0 0.9981
0.0007 9.0 1440 0.0103 0.0 0.0 0.0 0.9982
0.0009 10.0 1600 0.0103 0.0 0.0 0.0 0.9982

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1