SciBERT_TwoWayLoss_25K_bs64
This model is a fine-tuned version of allenai/scibert_scivocab_uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 5.7117
- Accuracy: 0.7367
- Precision: 0.0357
- Recall: 0.9994
- F1: 0.0689
- Hamming: 0.2633
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 192
- eval_batch_size: 192
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 25000
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Hamming |
---|---|---|---|---|---|---|---|---|
6.7538 | 0.47 | 5000 | 6.4722 | 0.7208 | 0.0337 | 0.9987 | 0.0652 | 0.2792 |
6.1625 | 0.95 | 10000 | 6.0293 | 0.7311 | 0.0350 | 0.9991 | 0.0676 | 0.2689 |
5.7863 | 1.42 | 15000 | 5.8415 | 0.7362 | 0.0356 | 0.9992 | 0.0688 | 0.2638 |
5.6995 | 1.9 | 20000 | 5.7343 | 0.7366 | 0.0357 | 0.9994 | 0.0689 | 0.2634 |
5.4711 | 2.37 | 25000 | 5.7117 | 0.7367 | 0.0357 | 0.9994 | 0.0689 | 0.2633 |
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.7.1
- Tokenizers 0.14.1
- Downloads last month
- 96
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for bdpc/SciBERT_twowayloss_25K_bs64
Base model
allenai/scibert_scivocab_uncased