Lonepino-11B / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
e5a17af verified
|
raw
history blame
4.83 kB
---
license: cc-by-nc-4.0
tags:
- merge
model-index:
- name: Lonepino-11B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.26
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beberik/Lonepino-11B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.57
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beberik/Lonepino-11B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.76
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beberik/Lonepino-11B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 63.45
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beberik/Lonepino-11B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.93
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beberik/Lonepino-11B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 61.64
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beberik/Lonepino-11B
name: Open LLM Leaderboard
---
## Description
This repo contains bf16 files of Lonepino-11B. Just a normal model.
## Model used
- [Intel/neural-chat-7b-v3-3-Slerp](https://huggingface.co/Intel/neural-chat-7b-v3-3-Slerp)
- [NeverSleep/Noromaid-7b-v0.2](https://huggingface.co/NeverSleep/Noromaid-7b-v0.2)
- [chargoddard/loyal-piano-m7-cdpo](https://huggingface.co/chargoddard/loyal-piano-m7-cdpo)
- [maywell/PiVoT-0.1-Starling-LM-RP](https://huggingface.co/maywell/PiVoT-0.1-Starling-LM-RP)
## The secret sauce
neural-maid-11B
```
slices:
- sources:
- model: Intel/neural-chat-7b-v3-3-Slerp
layer_range: [0, 24]
- sources:
- model: NeverSleep/Noromaid-7b-v0.2
layer_range: [8, 32]
merge_method: passthrough
dtype: bfloat16
```
loyal-PiVoT-11B
```
slices:
- sources:
- model: chargoddard/loyal-piano-m7-cdpo
layer_range: [0, 24]
- sources:
- model: maywell/PiVoT-0.1-Starling-LM-RP
layer_range: [8, 32]
merge_method: passthrough
dtype: bfloat16
```
Lonepino-11B :
```
slices:
- sources:
- model: "./neural-maid-11B"
layer_range: [0, 48]
- model: "./loyal-PiVoT-11B"
layer_range: [0, 48]
merge_method: slerp
base_model: "./neural-maid-11B"
parameters:
t:
- value: 0.4
dtype: bfloat16
```
## Prompt template
Alpaca. Or chatml. Or any you like.
=w=
I use [mergekit](https://github.com/cg123/mergekit) for all the manipulation told here.
Thanks to the [Undi95](https://huggingface.co/Undi95) for the original [11B mistral merge](https://huggingface.co/Undi95/Mistral-11B-OmniMix) recipe.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_beberik__Lonepino-11B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |70.10|
|AI2 Reasoning Challenge (25-Shot)|68.26|
|HellaSwag (10-Shot) |84.57|
|MMLU (5-Shot) |63.76|
|TruthfulQA (0-shot) |63.45|
|Winogrande (5-shot) |78.93|
|GSM8k (5-shot) |61.64|