Edit model card

MAE-CT-M1N0-M12_v8_split1

This model is a fine-tuned version of MCG-NJU/videomae-large-finetuned-kinetics on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4264
  • Accuracy: 0.7297

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 6400

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6776 0.0102 65 0.6899 0.5652
0.672 1.0102 130 0.7048 0.5652
0.6127 2.0102 195 0.7328 0.5652
0.6091 3.0102 260 0.6351 0.5652
0.4716 4.0102 325 0.6692 0.5652
0.3767 5.0102 390 1.0344 0.5652
0.444 6.0102 455 0.5516 0.6522
0.5153 7.0102 520 0.5306 0.8261
0.5645 8.0102 585 0.8665 0.5652
0.5957 9.0102 650 1.0774 0.5652
0.265 10.0102 715 1.1522 0.6522
0.2538 11.0102 780 1.1066 0.6087
0.3453 12.0102 845 1.3690 0.6087
0.3042 13.0102 910 0.3015 0.9130
0.1095 14.0102 975 1.0894 0.7391
0.3343 15.0102 1040 1.0325 0.7391
0.4758 16.0102 1105 0.2653 0.9130
0.2326 17.0102 1170 0.3844 0.9130
0.1366 18.0102 1235 0.3475 0.9565
0.0036 19.0102 1300 0.6067 0.9130
0.0005 20.0102 1365 1.2899 0.7826
0.0364 21.0102 1430 2.7527 0.5652
0.1536 22.0102 1495 1.9413 0.6522
0.03 23.0102 1560 2.2468 0.6522
0.0004 24.0102 1625 0.2265 0.9565
0.1525 25.0102 1690 0.4236 0.9130
0.0002 26.0102 1755 0.7375 0.9130
0.0001 27.0102 1820 1.1523 0.8261
0.0005 28.0102 1885 1.7289 0.7826
0.0237 29.0102 1950 0.7850 0.9130
0.2685 30.0102 2015 1.7432 0.7391
0.0293 31.0102 2080 0.8255 0.9130
0.0085 32.0102 2145 2.1138 0.7391
0.1503 33.0102 2210 0.4744 0.9130
0.0001 34.0102 2275 0.8058 0.8696
0.0004 35.0102 2340 1.8027 0.7391
0.1144 36.0102 2405 3.4276 0.5652
0.0003 37.0102 2470 0.6332 0.8261
0.1925 38.0102 2535 1.6992 0.6957
0.0001 39.0102 2600 1.2077 0.7826
0.0001 40.0102 2665 1.5120 0.8261
0.0 41.0102 2730 1.2723 0.7391
0.063 42.0102 2795 3.7744 0.5652
0.0001 43.0102 2860 3.1736 0.6522
0.1744 44.0102 2925 1.2165 0.8261
0.0001 45.0102 2990 3.7631 0.6087
0.0002 46.0102 3055 0.9466 0.8696
0.0 47.0102 3120 0.9563 0.8261
0.0001 48.0102 3185 1.0371 0.8261
0.1871 49.0102 3250 3.0532 0.6522
0.0036 50.0102 3315 2.5526 0.6522
0.0001 51.0102 3380 1.6451 0.8261
0.2135 52.0102 3445 0.4032 0.9565
0.0 53.0102 3510 0.8310 0.9130
0.0001 54.0102 3575 1.1302 0.8696
0.0001 55.0102 3640 1.7198 0.7826
0.0 56.0102 3705 1.0882 0.8696
0.0 57.0102 3770 1.1533 0.8696
0.0 58.0102 3835 1.4102 0.7826
0.0 59.0102 3900 1.4189 0.7826
0.0 60.0102 3965 1.3660 0.8261
0.0 61.0102 4030 1.2121 0.8696
0.0 62.0102 4095 1.8170 0.7826
0.0 63.0102 4160 1.0369 0.8696
0.0 64.0102 4225 1.3311 0.8696
0.233 65.0102 4290 0.8931 0.9130
0.0 66.0102 4355 0.4937 0.9565
0.0 67.0102 4420 1.5024 0.8261
0.0 68.0102 4485 1.5160 0.8261
0.0 69.0102 4550 1.4395 0.8261
0.0 70.0102 4615 1.2094 0.8261
0.0 71.0102 4680 1.0851 0.8261
0.0 72.0102 4745 1.1003 0.8261
0.0 73.0102 4810 1.0922 0.8261
0.0 74.0102 4875 1.2564 0.8261
0.0 75.0102 4940 1.2901 0.8261
0.0 76.0102 5005 1.2565 0.8261
0.0 77.0102 5070 1.2773 0.8261
0.0 78.0102 5135 1.2317 0.8261
0.0 79.0102 5200 1.2031 0.8261
0.0 80.0102 5265 1.1797 0.8261
0.0 81.0102 5330 1.1727 0.8261
0.0 82.0102 5395 1.1057 0.8261
0.0 83.0102 5460 1.0934 0.8261
0.0 84.0102 5525 1.0780 0.8261
0.0 85.0102 5590 1.0593 0.8261
0.0 86.0102 5655 1.0216 0.8261
0.0 87.0102 5720 1.0498 0.8261
0.0 88.0102 5785 1.0506 0.8261
0.0 89.0102 5850 1.0408 0.8261
0.0 90.0102 5915 1.9110 0.7826
0.0 91.0102 5980 0.7362 0.8696
0.0007 92.0102 6045 1.5211 0.8261
0.0 93.0102 6110 1.2596 0.8696
0.0 94.0102 6175 1.2852 0.8696
0.0 95.0102 6240 1.3083 0.8696
0.0 96.0102 6305 1.3085 0.8696
0.0 97.0102 6370 1.3091 0.8696
0.0 98.0047 6400 1.3091 0.8696

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.0.1+cu117
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
30
Safetensors
Model size
304M params
Tensor type
F32
·
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for beingbatman/MAE-CT-M1N0-M12_v8_split1

Finetuned
(19)
this model