belisards's picture
azmn-posicao-fin
a9a4526 verified
|
raw
history blame
2.57 kB
metadata
library_name: transformers
license: mit
base_model: neuralmind/bert-base-portuguese-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - recall
  - precision
model-index:
  - name: neuralmind/bert-base-portuguese-cased
    results: []

neuralmind/bert-base-portuguese-cased

This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0500
  • Accuracy: 0.7415
  • F1: 0.6919
  • Recall: 0.7472
  • Precision: 0.6838

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 5151
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 150
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
0.0667 1.0 18 0.0661 0.5536 0.4531 0.4520 0.4571
0.0624 2.0 36 0.0646 0.6696 0.5743 0.5752 0.5736
0.0625 3.0 54 0.0628 0.7321 0.6510 0.6510 0.6510
0.0612 4.0 72 0.0603 0.7411 0.6733 0.6795 0.6687
0.0566 5.0 90 0.0568 0.7768 0.7184 0.7260 0.7125
0.0544 6.0 108 0.0530 0.7589 0.7216 0.7588 0.7119
0.0488 7.0 126 0.0497 0.8214 0.7812 0.8010 0.7688
0.0398 8.0 144 0.0498 0.7946 0.7629 0.8054 0.75
0.0276 9.0 162 0.0540 0.8125 0.7681 0.7838 0.7575
0.0184 10.0 180 0.0674 0.7679 0.7156 0.7312 0.7065

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0