qwenvl-2B-cadica-stenosis-classify-scale4

This model is a fine-tuned version of AdaptLLM/biomed-Qwen2-VL-2B-Instruct on the CADICA狹窄分析選擇題scale4(TRAIN) dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1878
  • Num Input Tokens Seen: 39772368

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 6
  • total_train_batch_size: 24
  • total_eval_batch_size: 4
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • training_steps: 3400

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.9233 0.0258 50 0.9282 584856
0.9024 0.0515 100 0.9114 1169664
0.9045 0.0773 150 0.8935 1754512
0.904 0.1030 200 0.8980 2339304
0.9106 0.1288 250 0.8958 2924016
0.8901 0.1545 300 0.8932 3508888
0.9059 0.1803 350 0.8960 4093688
0.9033 0.2060 400 0.9063 4678384
0.9062 0.2318 450 0.9008 5263304
0.8576 0.2575 500 0.8269 5848048
0.8666 0.2833 550 0.7910 6432936
0.7997 0.3090 600 0.7877 7017576
0.8367 0.3348 650 0.7941 7602512
0.774 0.3605 700 0.7319 8187320
0.6751 0.3863 750 0.7322 8772104
0.6911 0.4121 800 0.7180 9357016
0.7455 0.4378 850 0.7039 9941896
0.7378 0.4636 900 0.7198 10526712
0.6825 0.4893 950 0.6831 11111520
0.5971 0.5151 1000 0.7079 11696200
0.6914 0.5408 1050 0.6824 12281072
0.5825 0.5666 1100 0.6432 12865992
0.5228 0.5923 1150 0.6230 13450720
0.5078 0.6181 1200 0.6184 14035544
0.5268 0.6438 1250 0.5497 14620336
0.4578 0.6696 1300 0.4947 15205064
0.4702 0.6953 1350 0.5248 15789848
0.4294 0.7211 1400 0.4732 16374784
0.4353 0.7468 1450 0.4350 16959632
0.3369 0.7726 1500 0.3964 17544440
0.4666 0.7984 1550 0.4266 18129304
0.3834 0.8241 1600 0.4477 18714072
0.475 0.8499 1650 0.3513 19298848
0.3752 0.8756 1700 0.3438 19883504
0.3233 0.9014 1750 0.3325 20468200
0.3279 0.9271 1800 0.3502 21053080
0.3221 0.9529 1850 0.2935 21637848
0.3781 0.9786 1900 0.2973 22222632
0.2845 1.0041 1950 0.2473 22801512
0.2272 1.0299 2000 0.2834 23386232
0.2924 1.0556 2050 0.2704 23971048
0.2805 1.0814 2100 0.3205 24555904
0.2536 1.1071 2150 0.3081 25140752
0.3184 1.1329 2200 0.2492 25725560
0.273 1.1586 2250 0.2201 26310336
0.2903 1.1844 2300 0.2940 26895096
0.2757 1.2101 2350 0.2621 27479840
0.2766 1.2359 2400 0.2361 28064552
0.3076 1.2617 2450 0.2372 28649256
0.257 1.2874 2500 0.2489 29233968
0.2192 1.3132 2550 0.2432 29818856
0.224 1.3389 2600 0.2026 30403640
0.2377 1.3647 2650 0.1878 30988344
0.2269 1.3904 2700 0.2400 31573240
0.1416 1.4162 2750 0.2472 32158144
0.2162 1.4419 2800 0.2771 32743032
0.1912 1.4677 2850 0.2647 33327720
0.2015 1.4934 2900 0.2392 33912440
0.2069 1.5192 2950 0.2639 34497216
0.2027 1.5449 3000 0.2371 35082056
0.1925 1.5707 3050 0.2484 35666976
0.2139 1.5964 3100 0.2747 36251744
0.204 1.6222 3150 0.2423 36836560
0.1851 1.6480 3200 0.2286 37421416
0.2072 1.6737 3250 0.2406 38006200
0.2145 1.6995 3300 0.2692 38591128
0.2158 1.7252 3350 0.2447 39175888
0.1488 1.7510 3400 0.2225 39760664

Framework versions

  • PEFT 0.12.0
  • Transformers 4.47.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
0
Safetensors
Model size
2.21B params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ben81828/CADICA_qwenvl_stenosis_classify_scale4

Base model

Qwen/Qwen2-VL-2B
Adapter
(7)
this model