ben81828's picture
End of training
093ca76 verified
metadata
library_name: peft
license: apache-2.0
base_model: AdaptLLM/biomed-Qwen2-VL-2B-Instruct
tags:
  - llama-factory
  - lora
  - generated_from_trainer
model-index:
  - name: qwenvl-2B-cadica-direction-scale4
    results: []

qwenvl-2B-cadica-direction-scale4

This model is a fine-tuned version of AdaptLLM/biomed-Qwen2-VL-2B-Instruct on the CADICA血管分支方向題scale4(TRAIN) dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • Num Input Tokens Seen: 11990784

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 6
  • total_train_batch_size: 24
  • total_eval_batch_size: 4
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • training_steps: 1200

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.3441 0.0258 50 0.3383 499200
0.2274 0.0515 100 0.1866 998400
0.0667 0.0773 150 0.0967 1497600
0.0459 0.1030 200 0.0996 1996800
0.0805 0.1288 250 0.0559 2496000
0.0381 0.1545 300 0.0309 2995200
0.1761 0.1803 350 0.0439 3494400
0.0146 0.2060 400 0.0244 3993600
0.0157 0.2318 450 0.0067 4492800
0.0122 0.2575 500 0.0080 4992000
0.0339 0.2833 550 0.0034 5491200
0.0217 0.3090 600 0.0133 5990400
0.0327 0.3348 650 0.0210 6489600
0.0267 0.3605 700 0.0053 6988800
0.014 0.3863 750 0.0053 7488000
0.0065 0.4121 800 0.0068 7987200
0.0306 0.4378 850 0.0072 8486400
0.0063 0.4636 900 0.0107 8985600
0.0415 0.4893 950 0.0072 9484800
0.0547 0.5151 1000 0.0007 9984000
0.0007 0.5408 1050 0.0568 10483200
0.0056 0.5666 1100 0.0004 10982400
0.0127 0.5923 1150 0.0000 11481600
0.0038 0.6181 1200 0.0022 11980800

Framework versions

  • PEFT 0.12.0
  • Transformers 4.47.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3