Edit model card

roberta-large-wechsel-ukrainian

roberta-base transferred to Ukrainian using the method from the NAACL2022 paper WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

Evaluation

Evaluation was done on lang-uk's ner-uk project, the Ukrainian portion of WikiANN and the Ukrainian IU corpus from the Universal Dependencies project. Evaluation results are the mean of 5 runs with different seeds.

Validation Results

lang-uk NER (Micro F1) WikiANN (Micro F1) UD Ukrainian IU POS (Accuracy)
roberta-base-wechsel-ukrainian 88.06 (0.50) 92.96 (0.08) 98.70 (0.05)
roberta-large-wechsel-ukrainian 89.27 (0.53) 93.22 (0.15) 98.86 (0.03)
roberta-base-scratch-ukrainian* 85.49 (0.88) 91.91 (0.08) 98.49 (0.04)
roberta-large-scratch-ukrainian* 86.54 (0.70) 92.39 (0.16) 98.65 (0.09)
dbmdz/electra-base-ukrainian-cased-discriminator 87.49 (0.52) 93.20 (0.16) 98.60 (0.03)
xlm-roberta-base 86.68 (0.44) 92.41 (0.13) 98.53 (0.02)
xlm-roberta-large 86.64 (1.61) 93.01 (0.13) 98.71 (0.04)

Test Results

lang-uk NER (Micro F1) WikiANN (Micro F1) UD Ukrainian IU POS (Accuracy)
roberta-base-wechsel-ukrainian 90.81 (1.51) 92.98 (0.12) 98.57 (0.03)
roberta-large-wechsel-ukrainian 91.24 (1.16) 93.22 (0.17) 98.74 (0.06)
roberta-base-scratch-ukrainian* 89.57 (1.01) 92.05 (0.09) 98.31 (0.08)
roberta-large-scratch-ukrainian* 89.96 (0.89) 92.49 (0.15) 98.52 (0.04)
dbmdz/electra-base-ukrainian-cased-discriminator 90.43 (1.29) 92.99 (0.11) 98.59 (0.06)
xlm-roberta-base 90.86 (0.81) 92.27 (0.09) 98.45 (0.07)
xlm-roberta-large 90.16 (2.98) 92.92 (0.19) 98.71 (0.04)

*trained using the same exact training setup as the wechsel-* models, but without parameter transfer from WECHSEL.

License

MIT

Downloads last month
23
Safetensors
Model size
355M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.