|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- fistro/gromenauer |
|
language: |
|
- es |
|
pipeline_tag: text-generation |
|
--- |
|
# gromenauer-7B |
|
|
|
<div align=center> |
|
<img alt="gromenauer-7B logo" src="https://huggingface.co/bertin-project/bertin-gromenauer/resolve/main/images/gromenauer.png" width="200px"> |
|
</div> |
|
|
|
## Overview |
|
|
|
gromenauer-7B is a Spanish language model designed to understand and generate high-quality Spanish text. Developed using the robust Mistral architecture, this model has been trained on an extensive literary corpus, ensuring it captures a wide range of linguistic nuances, styles, and contexts found in Spanish literature. |
|
## Model Details |
|
|
|
- **Model Type**: Mistral |
|
- **Sequence Length**: 8192 |
|
- **Hidden Dimension**: 4096 |
|
- **Intermediate Dimension**: 14336 |
|
- **Number of Layers**: 32 |
|
- **Number of Attention Heads**: 32 |
|
- **Number of Key-Value Heads**: 8 |
|
- **Activation Function**: SiLU |
|
- **Initializer Range**: 0.02 |
|
- **Layer Norm Epsilon**: 1.0e-05 |
|
- **Use Flash Attention**: Yes |
|
- **Gradient Checkpointing**: Enabled (Block Size: 5) |
|
- **Sliding Window Attention**: 4096 |
|
- **Use Bias**: No |
|
|
|
## Training Details |
|
|
|
- **Tokenizer**: [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) |
|
- **Batch Size**: 512 |
|
- **Learning Rate**: 1e-5 |
|
- **Optimizer**: Adam with beta1=0.9, beta2=0.95, epsilon=1e-8 |
|
- **Weight Decay**: 0.1 |
|
- **Warmup Steps**: 200 |
|
- **Learning Rate Schedule**: Cosine |
|
- **Number of Training Steps**: 7000 |
|
|
|
## Usage |
|
|
|
To load the model in your project, you can use the following code: |
|
|
|
```python |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
# Load the tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained("bertin-project/gromenauer-7B") |
|
|
|
# Load the model |
|
model = AutoModel.from_pretrained("bertin-project/gromenauer-7B") |
|
|
|
# Example usage |
|
text = "Introduce aquí tu texto en español." |
|
inputs = tokenizer(text, return_tensors="pt") |
|
outputs = model(**inputs) |