|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
datasets: |
|
- klue |
|
language: |
|
- ko |
|
license: cc-by-4.0 |
|
--- |
|
|
|
# bespin-global/klue-sroberta-base-continue-learning-by-mnr |
|
|
|
ํด๋น ๋ชจ๋ธ์ KLUE/NLI, KLUE/STS ๋ฐ์ดํฐ์
์ ํ์ฉํ์์ผ๋ฉฐ, sentence-transformers์ ๊ณต์ ๋ฌธ์ ๋ด ์๊ฐ๋ [continue-learning](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/sts/training_stsbenchmark_continue_training.py) ๋ฐฉ๋ฒ์ ํตํด ์๋์ ๊ฐ์ด ํ์ต๋์์ต๋๋ค. |
|
1. NLI ๋ฐ์ดํฐ์
์ ํตํด nagative sampling ํ, MultipleNegativeRankingLoss๋ฅผ ํ์ฉํ์ฌ 1์ฐจ NLI training ์ํ |
|
2. 1์์ ํ์ต์๋ฃ ๋ ๋ชจ๋ธ์ STS ๋ฐ์ดํฐ์
์ ํตํด, CosineSimilarityLoss๋ฅผ ํ์ฉํ์ฌ 2์ฐจ STS training ์ํ |
|
|
|
ํ์ต์ ๊ดํ ์์ธํ ๋ด์ฉ์ [Blog](https://velog.io/@jaehyeong/Basic-NLP-sentence-transformers-%EB%9D%BC%EC%9D%B4%EB%B8%8C%EB%9F%AC%EB%A6%AC%EB%A5%BC-%ED%99%9C%EC%9A%A9%ED%95%9C-SBERT-%ED%95%99%EC%8A%B5-%EB%B0%A9%EB%B2%95#225-continue-learning-by-sts)์ [Colab ์ค์ต ์ฝ๋](https://colab.research.google.com/drive/1uDt3o_Nv2cTiVbIAIUkst_eOSD37Wkmf)๋ฅผ ์ฐธ๊ณ ํด์ฃผ์ธ์. |
|
|
|
--- |
|
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
<!--- Describe your model here --> |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["This is an example sentence", "Each sentence is converted"] |
|
|
|
model = SentenceTransformer("bespin-global/klue-sroberta-base-continue-learning-by-mnr") |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
|
|
|
|
## Usage (HuggingFace Transformers) |
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ['This is an example sentence', 'Each sentence is converted'] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained("bespin-global/klue-sroberta-base-continue-learning-by-mnr") |
|
model = AutoModel.from_pretrained("bespin-global/klue-sroberta-base-continue-learning-by-mnr") |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
|
|
|
|
## Evaluation Results |
|
|
|
<!--- Describe how your model was evaluated --> |
|
|
|
**EmbeddingSimilarityEvaluator: Evaluating the model on sts-test dataset:** |
|
- Cosine-Similarity : |
|
- Pearson: 0.8901 Spearman: 0.8893 |
|
- Manhattan-Distance: |
|
- Pearson: 0.8867 Spearman: 0.8818 |
|
- Euclidean-Distance: |
|
- Pearson: 0.8875 Spearman: 0.8827 |
|
- Dot-Product-Similarity: |
|
- Pearson: 0.8786 Spearman: 0.8735 |
|
- Average : 0.8892573547643868 |
|
|
|
|
|
## Training |
|
The model was trained with the parameters: |
|
|
|
**DataLoader**: |
|
|
|
`torch.utils.data.dataloader.DataLoader` of length 329 with parameters: |
|
``` |
|
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` |
|
|
|
Parameters of the fit()-Method: |
|
``` |
|
{ |
|
"epochs": 4, |
|
"evaluation_steps": 32, |
|
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", |
|
"max_grad_norm": 1, |
|
"optimizer_class": "<class 'transformers.optimization.AdamW'>", |
|
"optimizer_params": { |
|
"lr": 2e-05 |
|
}, |
|
"scheduler": "WarmupLinear", |
|
"steps_per_epoch": null, |
|
"warmup_steps": 132, |
|
"weight_decay": 0.01 |
|
} |
|
``` |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: RobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) |
|
) |
|
``` |
|
|
|
## Citing & Authors |
|
|
|
<!--- Describe where people can find more information --> |
|
[Jaehyeong](https://huggingface.co/jaehyeong) at [Bespin Global](https://www.bespinglobal.com/) |