JaeHyeong's picture
Update README.md
6e02a72
|
raw
history blame
5.27 kB
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
datasets:
- klue
language:
- ko
license: cc-by-4.0
---
# bespin-global/klue-sroberta-base-continue-learning-by-mnr
ํ•ด๋‹น ๋ชจ๋ธ์€ KLUE/NLI, KLUE/STS ๋ฐ์ดํ„ฐ์…‹์„ ํ™œ์šฉํ•˜์˜€์œผ๋ฉฐ, sentence-transformers์˜ ๊ณต์‹ ๋ฌธ์„œ ๋‚ด ์†Œ๊ฐœ๋œ [continue-learning](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/sts/training_stsbenchmark_continue_training.py) ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ์•„๋ž˜์™€ ๊ฐ™์ด ํ•™์Šต๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
1. NLI ๋ฐ์ดํ„ฐ์…‹์„ ํ†ตํ•ด nagative sampling ํ›„, MultipleNegativeRankingLoss๋ฅผ ํ™œ์šฉํ•˜์—ฌ 1์ฐจ NLI training ์ˆ˜ํ–‰
2. 1์—์„œ ํ•™์Šต์™„๋ฃŒ ๋œ ๋ชจ๋ธ์— STS ๋ฐ์ดํ„ฐ์…‹์„ ํ†ตํ•ด, CosineSimilarityLoss๋ฅผ ํ™œ์šฉํ•˜์—ฌ 2์ฐจ STS training ์ˆ˜ํ–‰
ํ•™์Šต์— ๊ด€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ [Blog](https://velog.io/@jaehyeong/Basic-NLP-sentence-transformers-%EB%9D%BC%EC%9D%B4%EB%B8%8C%EB%9F%AC%EB%A6%AC%EB%A5%BC-%ED%99%9C%EC%9A%A9%ED%95%9C-SBERT-%ED%95%99%EC%8A%B5-%EB%B0%A9%EB%B2%95#225-continue-learning-by-sts)์™€ [Colab ์‹ค์Šต ์ฝ”๋“œ](https://colab.research.google.com/drive/1uDt3o_Nv2cTiVbIAIUkst_eOSD37Wkmf)๋ฅผ ์ฐธ๊ณ ํ•ด์ฃผ์„ธ์š”.
---
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer("bespin-global/klue-sroberta-base-continue-learning-by-mnr")
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("bespin-global/klue-sroberta-base-continue-learning-by-mnr")
model = AutoModel.from_pretrained("bespin-global/klue-sroberta-base-continue-learning-by-mnr")
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
**EmbeddingSimilarityEvaluator: Evaluating the model on sts-test dataset:**
- Cosine-Similarity :
- Pearson: 0.8901 Spearman: 0.8893
- Manhattan-Distance:
- Pearson: 0.8867 Spearman: 0.8818
- Euclidean-Distance:
- Pearson: 0.8875 Spearman: 0.8827
- Dot-Product-Similarity:
- Pearson: 0.8786 Spearman: 0.8735
- Average : 0.8892573547643868
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 329 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 4,
"evaluation_steps": 32,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 132,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
[Jaehyeong](https://huggingface.co/jaehyeong) at [Bespin Global](https://www.bespinglobal.com/)