|
--- |
|
base_model: |
|
- OpenPipe/mistral-ft-optimized-1227 |
|
- mlabonne/NeuralHermes-2.5-Mistral-7B |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- OpenPipe/mistral-ft-optimized-1227 |
|
- mlabonne/NeuralHermes-2.5-Mistral-7B |
|
license: apache-2.0 |
|
--- |
|
|
|
# llambses-1 |
|
|
|
llambses-1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [OpenPipe/mistral-ft-optimized-1227](https://huggingface.co/OpenPipe/mistral-ft-optimized-1227) |
|
* [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
models: |
|
- model: Kukedlc/NeuralSynthesis-7b-v0.4-slerp |
|
- model: OpenPipe/mistral-ft-optimized-1227 |
|
parameters: |
|
density: 0.5 |
|
weight: 0.6 |
|
- model: mlabonne/NeuralHermes-2.5-Mistral-7B |
|
parameters: |
|
density: 0.5 |
|
weight: 0.4 |
|
merge_method: ties |
|
base_model: Kukedlc/NeuralSynthesis-7b-v0.4-slerp |
|
parameters: |
|
normalize: true |
|
dtype: float16 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "bfuzzy1/llambses-1" |
|
|
|
chat_template = """{% for message in messages %} |
|
{% if message['role'] == 'user' %} |
|
{{ bos_token + '[INST] ' + message['content'] + ' [/INST]' }} |
|
{% elif message['role'] == 'assistant' %} |
|
{{ message['content'] + eos_token }} |
|
{% elif message['role'] == 'system' %} |
|
{{ '<<SYS>>\\n' + message['content'] + '\\n<</SYS>>\\n\\n' }} |
|
{% endif %} |
|
{% endfor %} |
|
""" |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a helpful AI assistant."}, |
|
{"role": "user", "content": "What is a large language model?"} |
|
] |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
template = tokenizer.chat_template = chat_template |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=100, do_sample=True, temperature=0.7, top_k=3, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |