llambses-1 / README.md
bfuzzy1's picture
update usage
e87b193 verified
|
raw
history blame
2.19 kB
---
base_model:
- OpenPipe/mistral-ft-optimized-1227
- mlabonne/NeuralHermes-2.5-Mistral-7B
tags:
- merge
- mergekit
- lazymergekit
- OpenPipe/mistral-ft-optimized-1227
- mlabonne/NeuralHermes-2.5-Mistral-7B
license: apache-2.0
---
# llambses-1
llambses-1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [OpenPipe/mistral-ft-optimized-1227](https://huggingface.co/OpenPipe/mistral-ft-optimized-1227)
* [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B)
## 🧩 Configuration
```yaml
models:
- model: Kukedlc/NeuralSynthesis-7b-v0.4-slerp
- model: OpenPipe/mistral-ft-optimized-1227
parameters:
density: 0.5
weight: 0.6
- model: mlabonne/NeuralHermes-2.5-Mistral-7B
parameters:
density: 0.5
weight: 0.4
merge_method: ties
base_model: Kukedlc/NeuralSynthesis-7b-v0.4-slerp
parameters:
normalize: true
dtype: float16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "bfuzzy1/llambses-1"
chat_template = """{% for message in messages %}
{% if message['role'] == 'user' %}
{{ bos_token + '[INST] ' + message['content'] + ' [/INST]' }}
{% elif message['role'] == 'assistant' %}
{{ message['content'] + eos_token }}
{% elif message['role'] == 'system' %}
{{ '<<SYS>>\\n' + message['content'] + '\\n<</SYS>>\\n\\n' }}
{% endif %}
{% endfor %}
"""
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "What is a large language model?"}
]
tokenizer = AutoTokenizer.from_pretrained(model)
template = tokenizer.chat_template = chat_template
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=100, do_sample=True, temperature=0.7, top_k=3, top_p=0.95)
print(outputs[0]["generated_text"])
```