File size: 3,185 Bytes
4b370a8 b6e0869 4b370a8 740efe3 4b370a8 b6e0869 740efe3 b6e0869 740efe3 b6e0869 740efe3 b6e0869 740efe3 11350fa 740efe3 11350fa 740efe3 11350fa 740efe3 11350fa 740efe3 11350fa 740efe3 11350fa 740efe3 11350fa 740efe3 11350fa 740efe3 11350fa 740efe3 11350fa 740efe3 11350fa 740efe3 11350fa 740efe3 11350fa 740efe3 11350fa 740efe3 11350fa 740efe3 11350fa 740efe3 11350fa 740efe3 11350fa 740efe3 11350fa 740efe3 11350fa 740efe3 11350fa 740efe3 11350fa 740efe3 11350fa 4b370a8 495222d 4b370a8 495222d 4b370a8 495222d 4b370a8 495222d 4b370a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
---
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
base_model: distilbert-base-uncased
model-index:
- name: bertweet-base-finetuned-emotion
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- type: accuracy
value: 0.9365
name: Accuracy
- type: f1
value: 0.9371
name: F1
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
config: default
split: test
metrics:
- type: accuracy
value: 0.923
name: Accuracy
verified: true
- type: precision
value: 0.8676576686813523
name: Precision Macro
verified: true
- type: precision
value: 0.923
name: Precision Micro
verified: true
- type: precision
value: 0.9268406401714973
name: Precision Weighted
verified: true
- type: recall
value: 0.8945488803260702
name: Recall Macro
verified: true
- type: recall
value: 0.923
name: Recall Micro
verified: true
- type: recall
value: 0.923
name: Recall Weighted
verified: true
- type: f1
value: 0.8798961895301041
name: F1 Macro
verified: true
- type: f1
value: 0.923
name: F1 Micro
verified: true
- type: f1
value: 0.9241278880972197
name: F1 Weighted
verified: true
- type: loss
value: 0.24626904726028442
name: loss
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1995
- Accuracy: 0.9365
- F1: 0.9371
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.475 | 1.0 | 503 | 0.2171 | 0.928 | 0.9292 |
| 0.1235 | 2.0 | 1006 | 0.1764 | 0.9365 | 0.9372 |
| 0.0802 | 3.0 | 1509 | 0.1788 | 0.938 | 0.9388 |
| 0.0531 | 4.0 | 2012 | 0.2005 | 0.938 | 0.9388 |
| 0.0367 | 5.0 | 2515 | 0.1995 | 0.9365 | 0.9371 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.11.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|