File size: 3,185 Bytes
4b370a8
 
 
b6e0869
 
4b370a8
 
 
740efe3
4b370a8
b6e0869
 
 
 
740efe3
b6e0869
 
 
 
 
740efe3
b6e0869
740efe3
 
b6e0869
740efe3
11350fa
 
 
 
 
 
 
 
 
740efe3
11350fa
740efe3
11350fa
740efe3
11350fa
740efe3
11350fa
740efe3
11350fa
740efe3
11350fa
740efe3
11350fa
740efe3
11350fa
740efe3
11350fa
740efe3
11350fa
740efe3
11350fa
740efe3
11350fa
740efe3
11350fa
740efe3
11350fa
740efe3
11350fa
740efe3
11350fa
740efe3
11350fa
740efe3
11350fa
740efe3
11350fa
740efe3
11350fa
740efe3
11350fa
740efe3
11350fa
4b370a8
 
 
 
 
 
 
495222d
4b370a8
495222d
 
 
4b370a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495222d
4b370a8
 
 
 
 
495222d
 
 
 
 
4b370a8
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
base_model: distilbert-base-uncased
model-index:
- name: bertweet-base-finetuned-emotion
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: emotion
      type: emotion
      args: default
    metrics:
    - type: accuracy
      value: 0.9365
      name: Accuracy
    - type: f1
      value: 0.9371
      name: F1
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: emotion
      type: emotion
      config: default
      split: test
    metrics:
    - type: accuracy
      value: 0.923
      name: Accuracy
      verified: true
    - type: precision
      value: 0.8676576686813523
      name: Precision Macro
      verified: true
    - type: precision
      value: 0.923
      name: Precision Micro
      verified: true
    - type: precision
      value: 0.9268406401714973
      name: Precision Weighted
      verified: true
    - type: recall
      value: 0.8945488803260702
      name: Recall Macro
      verified: true
    - type: recall
      value: 0.923
      name: Recall Micro
      verified: true
    - type: recall
      value: 0.923
      name: Recall Weighted
      verified: true
    - type: f1
      value: 0.8798961895301041
      name: F1 Macro
      verified: true
    - type: f1
      value: 0.923
      name: F1 Micro
      verified: true
    - type: f1
      value: 0.9241278880972197
      name: F1 Weighted
      verified: true
    - type: loss
      value: 0.24626904726028442
      name: loss
      verified: true
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-emotion

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1995
- Accuracy: 0.9365
- F1: 0.9371

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.475         | 1.0   | 503  | 0.2171          | 0.928    | 0.9292 |
| 0.1235        | 2.0   | 1006 | 0.1764          | 0.9365   | 0.9372 |
| 0.0802        | 3.0   | 1509 | 0.1788          | 0.938    | 0.9388 |
| 0.0531        | 4.0   | 2012 | 0.2005          | 0.938    | 0.9388 |
| 0.0367        | 5.0   | 2515 | 0.1995          | 0.9365   | 0.9371 |


### Framework versions

- Transformers 4.13.0
- Pytorch 1.11.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3