Text Generation
Transformers
PyTorch
TensorBoard
Safetensors
bloom
Eval Results
text-generation-inference
Inference Endpoints
bloom / README.md
ybelkada
Widget multiline examples correct behaviour (#67)
d9bf58e
|
raw
history blame
74.9 kB
metadata
license: bigscience-bloom-rail-1.0
language:
  - ak
  - ar
  - as
  - bm
  - bn
  - ca
  - code
  - en
  - es
  - eu
  - fon
  - fr
  - gu
  - hi
  - id
  - ig
  - ki
  - kn
  - lg
  - ln
  - ml
  - mr
  - ne
  - nso
  - ny
  - or
  - pa
  - pt
  - rn
  - rw
  - sn
  - st
  - sw
  - ta
  - te
  - tn
  - ts
  - tum
  - tw
  - ur
  - vi
  - wo
  - xh
  - yo
  - zh
  - zu
programming_language:
  - C
  - C++
  - C#
  - Go
  - Java
  - JavaScript
  - Lua
  - PHP
  - Python
  - Ruby
  - Rust
  - Scala
  - TypeScript
pipeline_tag: text-generation
widget:
  - text: >-
      A "whatpu" is a small, furry animal native to Tanzania. An example of a
      sentence that uses the word whatpu is: We were traveling in Africa and we
      saw these very cute whatpus. | To do a "farduddle" means to jump up and
      down really fast. An example of a sentence that uses the word farduddle
      is:
    example_title: Imaginary word
    group: English
  - text: >-
      Un "whatpu" est un petit animal à fourrure originaire de Tanzanie. Un
      exemple de phrase qui utilise le mot whatpu est: Nous étions en Afrique et
      nous avons vu des whatpus trop mignons. Faire un "farduddle" veut dire
      sauter sur place vraiment vite. Un exemple de phrase qui utilise le mot
      farduddle est:
    example_title: Imaginary word
    group: French
  - text: >-
      Un "whatpu" es un pequeño animal peludo nativo de Tanzania. Un ejemplo de
      una oración que usa la palabra whatpu es: Estábamos viajando por África y
      vimos estos whatpus muy bonitos. Hacer un "farduddle" significa saltar
      arriba y abajo muy rápido. Un ejemplo de una oración que usa la palabra
      farduddle es:
    example_title: Imaginary word
    group: Spanish
  - text: ' ال"واتبو" هو حيوان صغير مكسو بالفراء يعيش في تنزانيا. مثال على جملة تستخدم كلمة واتبو هي: كنا نسافر في افريقيا و رأينا هؤلاء الواتبو اللطفاء. للقيام ب"فاردادل" يعني ان تقفز للأعلى و الأسفل بسرعة كبيرة. مثال على جملة تستخدم كلمة فاردادل هي:'
    example_title: Imaginary word
    group: Arabic
  - text: >-
      Um "whatpu" é um pequeno animal peludo nativo da Tanzânia. Um exemplo de
      uma frase que usa a palavra whatpu é: Estávamos a viajar por África e
      vimos uns whatpus muito queridos. Fazer um "farduddle" significa saltar
      para cima e para baixo muito rápido. Um exemplo de uma frase que usa a
      palavra farduddle é:
    example: Imaginary word
    group: Portuguese
  - text: Pour déguster un ortolan, il faut tout d'abord
    example_title: Recipe
    group: French
  - text: |-
      34+10=44 
      54+20=
    example_title: Addition
    group: Math
  - text: |-
      This tool converts irregular verbs to past tense.
      Arise - Arose
      Become - Became
      Forget - Forgot
      Freeze -
    example_title: Irregular verbs
    group: English
  - text: |-
      Please unscramble the letters into a word, and write that word:
      r e!c.i p r o.c a/l = reciprocal
      d.o m i!n a n.t =
    example_title: Word unscrambling
    group: English
  - text: |-
      Estos ejemplos quitan vocales de las palabras
      Ejemplos:
      hola - hl
      manzana - mnzn
      papas - pps
      alacran - lcrn
      papa -
    example_title: Vowel removal
    group: Spanish
  - text: |-
      Traduce español de España a español de Argentina
      El coche es rojo - el auto es rojo
      El ordenador es nuevo - la computadora es nueva
      el boligrafo es negro - lapicera es negra
      la nevera
    example_title: Spanish to Argentinian Spanish
    group: Spanish
  - text: To say "I love you" in Hindi, you would say
    example_title: Translation to Hindi
    group: English
  - text: To say "I love you" in Hindi, you would say
    example_title: Translation from English
    group: Hindi
  - text: 'Poor English: She no went to the market. Corrected English:'
    example_title: Grammar exercise 1
    group: English
  - text: 'استخراج العدد العاملي في لغة بايثون:'
    example_title: Code generation
    group: Arabic
  - text: >-
      Regexp. Here is a regular expression to match a word starting with a
      number and then having only vowels:
    example_title: Regular expressions
    group: English
  - text: |-
      Do a hello world in different languages:
      Python: print("hello world")
      R:
    example_title: Code generation
    group: English
  - text: |-
      Which is the correct preposition? I'm born X July. X is the preposition in
      He sat X a chair. X is the preposition on
      She drove X the bridge. X is the preposition
    example_title: Grammar exercise 2
    group: English
  - text: >-
      Dans cet essai je vais m'interroger sur la conscience des modèles
      d'intelligence artificielle récents comme les modèles de langue. Pour
      commencer, je m'intéresserai à la notion de conscience et à ce qui la
      caractérise. Ensuite, j'aborderai la question de l'intelligence et de son
      lien avec le langage. Enfin, dans une dernière partie je me pencherai sur
      le cas de l'IA et sur sa conscience.

      Traduction en espagnol: « 
    example_title: Translation to Spanish
    group: French
  - text: >-
      Dans cet essai je vais m'interroger sur la conscience des modèles
      d'intelligence artificielle récents comme les modèles de langue. Pour
      commencer, je m'intéresserai à la notion de conscience et à ce qui la
      caractérise. Ensuite, j'aborderai la question de l'intelligence et de son
      lien avec le langage. Enfin, dans une dernière partie je me pencherai sur
      le cas de l'IA et sur sa conscience.

      Traduction en espagnol: « 
    example_title: Translation from French
    group: Spanish
  - text: ذات مرة ، عاش شبل الدب في الغابة
    example_title: Fairy tale
    group: Arabic
  - text: एक बार की बात है, जंगल में एक भालू का शावक रहता था
    example_title: Fairy tale
    group: Hindi
  - text: Il était une fois une licorne qui vivait
    example_title: Fairy tale
    group: French
  - text: ''
    Q: >-
      A juggler can juggle 16 balls. Half of the balls are golf balls, and half
      of the gold balls are blue. How many blue golf balls are there?
    A: Let's think step by step.
    example_title: Mathematical reasoning
    group: English
model-index:
  - name: bloom
    results:
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: arc_challenge
          type: arc_challenge
        metrics:
          - name: acc
            type: acc
            value: 0.4112627986348123
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: arc_easy
          type: arc_easy
        metrics:
          - name: acc
            type: acc
            value: 0.726010101010101
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: axb
          type: axb
        metrics:
          - name: acc
            type: acc
            value: 0.5751811594202898
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: axg
          type: axg
        metrics:
          - name: acc
            type: acc
            value: 0.5252808988764045
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: boolq
          type: boolq
        metrics:
          - name: acc
            type: acc
            value: 0.6345565749235474
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: cb
          type: cb
        metrics:
          - name: acc
            type: acc
            value: 0.3392857142857143
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: cola
          type: cola
        metrics:
          - name: acc
            type: acc
            value: 0.39022051773729627
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: copa
          type: copa
        metrics:
          - name: acc
            type: acc
            value: 0.56
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: crows_pairs_english
          type: crows_pairs_english
        metrics:
          - name: acc
            type: acc
            value: 0.5
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: crows_pairs_french
          type: crows_pairs_french
        metrics:
          - name: acc
            type: acc
            value: 0.505664877757901
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: diabla
          type: diabla
        metrics:
          - name: acc
            type: acc
            value: 0.2947981906750174
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_afr
          type: gsarti/flores_101_afr
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 4.25431550058444
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_amh
          type: gsarti/flores_101_amh
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 3.716877477347089
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_ara
          type: gsarti/flores_101_ara
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 1.7049030137120964
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_asm
          type: gsarti/flores_101_asm
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 6.576581380404954
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_ast
          type: gsarti/flores_101_ast
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.8562364775797944
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_azj
          type: gsarti/flores_101_azj
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 4.80721528624391
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_bel
          type: gsarti/flores_101_bel
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.7312177406635065
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_ben
          type: gsarti/flores_101_ben
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 5.993409478990023
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_bos
          type: gsarti/flores_101_bos
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 3.5936169095529493
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_bul
          type: gsarti/flores_101_bul
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.159035321398085
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_cat
          type: gsarti/flores_101_cat
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.167873680006659
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_ceb
          type: gsarti/flores_101_ceb
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 5.286975089885673
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_ces
          type: gsarti/flores_101_ces
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 3.4516208322236017
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_ckb
          type: gsarti/flores_101_ckb
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 3.7051034724765612
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_cym
          type: gsarti/flores_101_cym
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 7.0889312398688125
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_dan
          type: gsarti/flores_101_dan
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 3.4300748208111838
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_deu
          type: gsarti/flores_101_deu
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.3380585896268107
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_ell
          type: gsarti/flores_101_ell
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 1.9595604725375586
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_eng
          type: gsarti/flores_101_eng
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 1.8819637649637901
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_est
          type: gsarti/flores_101_est
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 5.773850600380297
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_fas
          type: gsarti/flores_101_fas
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.4306140728294086
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_fin
          type: gsarti/flores_101_fin
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 4.304305536244342
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_fra
          type: gsarti/flores_101_fra
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 1.9374688438541796
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_ful
          type: gsarti/flores_101_ful
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 9.740353097219378
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_gle
          type: gsarti/flores_101_gle
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 6.035269765075012
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_glg
          type: gsarti/flores_101_glg
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.365451129546636
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_guj
          type: gsarti/flores_101_guj
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 5.70676742569154
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_hau
          type: gsarti/flores_101_hau
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 8.855204288260023
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_heb
          type: gsarti/flores_101_heb
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.920943798471208
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_hin
          type: gsarti/flores_101_hin
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 5.452028001573195
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_hrv
          type: gsarti/flores_101_hrv
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 3.7056829077179225
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_hun
          type: gsarti/flores_101_hun
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 4.058579478967854
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_hye
          type: gsarti/flores_101_hye
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 3.127237816041562
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_ibo
          type: gsarti/flores_101_ibo
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 3.9500357969906683
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_ind
          type: gsarti/flores_101_ind
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 1.976163584180101
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_isl
          type: gsarti/flores_101_isl
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 5.500542085165231
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_ita
          type: gsarti/flores_101_ita
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.314465100752677
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_jav
          type: gsarti/flores_101_jav
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 4.942322446550142
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_jpn
          type: gsarti/flores_101_jpn
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.259421750521777
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_kam
          type: gsarti/flores_101_kam
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 9.743025325635475
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_kan
          type: gsarti/flores_101_kan
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 6.233724699944989
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_kat
          type: gsarti/flores_101_kat
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.0508893415872107
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_kaz
          type: gsarti/flores_101_kaz
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 3.0390148516287927
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_kea
          type: gsarti/flores_101_kea
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 7.147132270533836
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_khm
          type: gsarti/flores_101_khm
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 3.366514710252477
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_kir
          type: gsarti/flores_101_kir
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 3.2413845359487885
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_kor
          type: gsarti/flores_101_kor
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.9023196482741027
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_lao
          type: gsarti/flores_101_lao
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.331446855837494
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_lav
          type: gsarti/flores_101_lav
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 5.223609016485348
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_lin
          type: gsarti/flores_101_lin
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 4.847471204107301
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_lit
          type: gsarti/flores_101_lit
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 4.5432035498036765
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_ltz
          type: gsarti/flores_101_ltz
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 5.5910516978201015
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_lug
          type: gsarti/flores_101_lug
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 5.4301049946044175
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_luo
          type: gsarti/flores_101_luo
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 12.031029857399394
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_mal
          type: gsarti/flores_101_mal
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 4.794302548141229
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_mar
          type: gsarti/flores_101_mar
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 6.856682255407709
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_mkd
          type: gsarti/flores_101_mkd
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.3354144607382983
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_mlt
          type: gsarti/flores_101_mlt
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 9.04135227904975
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_mon
          type: gsarti/flores_101_mon
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 3.094907723618666
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_mri
          type: gsarti/flores_101_mri
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 5.2659698341456505
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_msa
          type: gsarti/flores_101_msa
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.2220779892820985
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_mya
          type: gsarti/flores_101_mya
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.5229159853414433
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_nld
          type: gsarti/flores_101_nld
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.799153089002766
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_nob
          type: gsarti/flores_101_nob
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 3.628942049758715
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_npi
          type: gsarti/flores_101_npi
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 6.666236527803879
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_nso
          type: gsarti/flores_101_nso
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 5.015319074943932
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_nya
          type: gsarti/flores_101_nya
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 4.938044040751036
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_oci
          type: gsarti/flores_101_oci
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 3.607440766288032
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_orm
          type: gsarti/flores_101_orm
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 11.31585044916705
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_ory
          type: gsarti/flores_101_ory
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 5.981891184515959
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_pan
          type: gsarti/flores_101_pan
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 4.7716086841502685
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_pol
          type: gsarti/flores_101_pol
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 3.01200174157614
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_por
          type: gsarti/flores_101_por
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 1.8411472115156693
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_pus
          type: gsarti/flores_101_pus
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 4.623872921169341
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_ron
          type: gsarti/flores_101_ron
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 3.049829411973529
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_rus
          type: gsarti/flores_101_rus
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 1.7083443875791493
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_slk
          type: gsarti/flores_101_slk
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 4.037719650548048
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_slv
          type: gsarti/flores_101_slv
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 4.141036287764831
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_sna
          type: gsarti/flores_101_sna
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 4.7109183690601295
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_snd
          type: gsarti/flores_101_snd
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 4.206170931541356
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_som
          type: gsarti/flores_101_som
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 9.154342083821405
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_spa
          type: gsarti/flores_101_spa
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 1.7955816311143258
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_srp
          type: gsarti/flores_101_srp
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.241096141430147
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_swe
          type: gsarti/flores_101_swe
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 3.344977179674293
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_swh
          type: gsarti/flores_101_swh
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.6844272218041634
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_tam
          type: gsarti/flores_101_tam
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 5.1645951632801745
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_tel
          type: gsarti/flores_101_tel
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 6.8098996634099445
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_tgk
          type: gsarti/flores_101_tgk
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 3.785457016715163
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_tgl
          type: gsarti/flores_101_tgl
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 3.7498953645610875
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_tha
          type: gsarti/flores_101_tha
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.104151663233468
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_tur
          type: gsarti/flores_101_tur
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 3.3178240103796037
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_ukr
          type: gsarti/flores_101_ukr
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.088543437159643
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_umb
          type: gsarti/flores_101_umb
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 11.766013385445124
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_urd
          type: gsarti/flores_101_urd
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 1.7788699847612357
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_uzb
          type: gsarti/flores_101_uzb
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 8.499879863290486
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_vie
          type: gsarti/flores_101_vie
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 1.65901207387262
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_wol
          type: gsarti/flores_101_wol
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 6.141703791276928
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_xho
          type: gsarti/flores_101_xho
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 4.690199677955254
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_yor
          type: gsarti/flores_101_yor
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 4.360585696242932
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_zho_simpl
          type: gsarti/flores_101_zho_simpl
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.1183545781883515
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_zho_trad
          type: gsarti/flores_101_zho_trad
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 2.273787884962656
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: gsarti/flores_101_zul
          type: gsarti/flores_101_zul
        metrics:
          - name: byte_perplexity
            type: byte_perplexity
            value: 6.016954767729589
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: headqa
          type: headqa
        metrics:
          - name: acc
            type: acc
            value: 0.3464624361779723
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: hellaswag
          type: hellaswag
        metrics:
          - name: acc
            type: acc
            value: 0.5353515236008763
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: lambada_mt_de
          type: lambada_mt_de
        metrics:
          - name: acc
            type: acc
            value: 0.3291286629148069
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: lambada_mt_en
          type: lambada_mt_en
        metrics:
          - name: acc
            type: acc
            value: 0.6720357073549389
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: lambada_mt_es
          type: lambada_mt_es
        metrics:
          - name: acc
            type: acc
            value: 0.476421502037648
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: lambada_mt_it
          type: lambada_mt_it
        metrics:
          - name: acc
            type: acc
            value: 0.4061711624296526
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: logiqa
          type: logiqa
        metrics:
          - name: acc
            type: acc
            value: 0.2350230414746544
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: mathqa
          type: mathqa
        metrics:
          - name: acc
            type: acc
            value: 0.27671691792294806
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: mc_taco
          type: mc_taco
        metrics:
          - name: em
            type: em
            value: 0.13063063063063063
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: mnli
          type: mnli
        metrics:
          - name: acc
            type: acc
            value: 0.3545565500406835
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: mnli_mismatched
          type: mnli_mismatched
        metrics:
          - name: acc
            type: acc
            value: 0.3545565500406835
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: mrpc
          type: mrpc
        metrics:
          - name: acc
            type: acc
            value: 0.3872549019607843
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: multirc
          type: multirc
        metrics:
          - name: acc
            type: acc
            value: 0.570957095709571
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: openbookqa
          type: openbookqa
        metrics:
          - name: acc
            type: acc
            value: 0.312
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: piqa
          type: piqa
        metrics:
          - name: acc
            type: acc
            value: 0.7812840043525572
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: prost
          type: prost
        metrics:
          - name: acc
            type: acc
            value: 0.2977156276686593
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: pubmedqa
          type: pubmedqa
        metrics:
          - name: acc
            type: acc
            value: 0.741
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: qnli
          type: qnli
        metrics:
          - name: acc
            type: acc
            value: 0.5172981878088962
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: qqp
          type: qqp
        metrics:
          - name: acc
            type: acc
            value: 0.5883007667573584
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: race
          type: race
        metrics:
          - name: acc
            type: acc
            value: 0.39043062200956935
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: rte
          type: rte
        metrics:
          - name: acc
            type: acc
            value: 0.5198555956678701
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: sciq
          type: sciq
        metrics:
          - name: acc
            type: acc
            value: 0.936
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: sst
          type: sst
        metrics:
          - name: acc
            type: acc
            value: 0.6043577981651376
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: triviaqa
          type: triviaqa
        metrics:
          - name: acc
            type: acc
            value: 0.18332891363917617
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: tydiqa_primary
          type: tydiqa_primary
        metrics:
          - name: acc
            type: acc
            value: 0.2809817301342725
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: webqs
          type: webqs
        metrics:
          - name: acc
            type: acc
            value: 0.061515748031496065
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: wic
          type: wic
        metrics:
          - name: acc
            type: acc
            value: 0.5062695924764891
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: winogrande
          type: winogrande
        metrics:
          - name: acc
            type: acc
            value: 0.7095501183898973
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: wnli
          type: wnli
        metrics:
          - name: acc
            type: acc
            value: 0.5704225352112676
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: wsc
          type: wsc
        metrics:
          - name: acc
            type: acc
            value: 0.5192307692307693
            verified: false
      - task:
          type: text-generation
          name: text generation
        dataset:
          name: humaneval
          type: humaneval
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.15524390243902436
            verified: false
          - name: pass@10
            type: pass@10
            value: 0.3220367632383857
            verified: false
          - name: pass@100
            type: pass@100
            value: 0.5545431515723145
            verified: false
BigScience Logo

BigScience Large Open-science Open-access Multilingual Language Model
Version 1.3 / 6 July 2022

Current Checkpoint: Training Iteration 95000

Total seen tokens: 366B


Model Details

BLOOM is an autoregressive Large Language Model (LLM), trained to continue text from a prompt on vast amounts of text data using industrial-scale computational resources. As such, it is able to output coherent text in 46 languages and 13 programming languages that is hardly distinguishable from text written by humans. BLOOM can also be instructed to perform text tasks it hasn't been explicitly trained for, by casting them as text generation tasks.

Basics

This section provides information about the model type, version, license, funders, release date, developers, and contact information. It is useful for anyone who wants to reference the model.

Click to expand

Developed by: BigScience (website)

All collaborators are either volunteers or have an agreement with their employer. (Further breakdown of participants forthcoming.)

Model Type: Transformer-based Language Model

Checkpoints format: transformers (Megatron-DeepSpeed format available here)

Version: 1.0.0

Languages: Multiple; see training data

License: RAIL License v1.0 (link / article and FAQ)

Release Date Estimate: Monday, 11.July.2022

Send Questions to: bigscience-contact@googlegroups.com

Cite as: BigScience, BigScience Language Open-science Open-access Multilingual (BLOOM) Language Model. International, May 2021-May 2022

Funded by:

  • The French government.

  • Hugging Face (website).

  • Organizations of contributors. (Further breakdown of organizations forthcoming.)

Technical Specifications

This section includes details about the model objective and architecture, and the compute infrastructure. It is useful for people interested in model development.

Click to expand

Please see the BLOOM training README for full details on replicating training.

Model Architecture and Objective

  • Modified from Megatron-LM GPT2 (see paper, BLOOM Megatron code):

  • Decoder-only architecture

  • Layer normalization applied to word embeddings layer (StableEmbedding; see code, paper)

  • ALiBI positional encodings (see paper), with GeLU activation functions

  • 176 billion parameters:

Objective Function: Cross Entropy with mean reduction (see API documentation).

Compute infrastructure

Jean Zay Public Supercomputer, provided by the French government (see announcement).

Hardware

  • 384 A100 80GB GPUs (48 nodes)

  • Additional 32 A100 80GB GPUs (4 nodes) in reserve

  • 8 GPUs per node Using NVLink 4 inter-gpu connects, 4 OmniPath links

  • CPU: AMD

  • CPU memory: 512GB per node

  • GPU memory: 640GB per node

  • Inter-node connect: Omni-Path Architecture (OPA)

  • NCCL-communications network: a fully dedicated subnet

  • Disc IO network: shared network with other types of nodes

Software


Training

This section provides information about the training data, the speed and size of training elements, and the environmental impact of training. It is useful for people who want to learn more about the model inputs and training footprint.

Click to expand

Training Data

This section provides a high-level overview of the training data. It is relevant for anyone who wants to know the basics of what the model is learning.

Details for each dataset are provided in individual Data Cards, and the sizes of each of their contributions to the aggregated training data are presented in an Interactive Corpus Map.

Training data includes:

  • 46 natural languages

  • 13 programming languages

  • In 1.6TB of pre-processed text, converted into 350B unique tokens (see the tokenizer section for more.)

Languages

The pie chart shows the distribution of languages in training data.

pie chart showing the distribution of languages in training data

The following tables shows the further distribution of Niger-Congo & Indic languages and programming languages in the training data.

Distribution of Niger Congo and Indic languages.

Niger Congo Percentage Indic Percentage
Chi Tumbuka 0.00002 Assamese 0.01
Kikuyu 0.00004 Odia 0.04
Bambara 0.00004 Gujarati 0.04
Akan 0.00007 Marathi 0.05
Xitsonga 0.00007 Punjabi 0.05
Sesotho 0.00007 Kannada 0.06
Chi Chewa 0.0001 Nepali 0.07
Setswana 0.0002 Telugu 0.09
Lingala 0.0002 Malayalam 0.10
Northern Sotho 0.0002 Urdu 0.10
Fon 0.0002 Tamil 0.20
Kirundi 0.0003 Bengali 0.50
Wolof 0.0004 Hindi 0.70
Luganda 0.0004
Chi Shona 0.001
Isi Zulu 0.001
Igbo 0.001
Xhosa 0.001
Kinyarwanda 0.003
Yoruba 0.006
Swahili 0.02

Distribution of programming languages.

Extension Language Number of files
java Java 5,407,724
php PHP 4,942,186
cpp C++ 2,503,930
py Python 2,435,072
js JavaScript 1,905,518
cs C# 1,577,347
rb Ruby 6,78,413
cc C++ 443,054
hpp C++ 391,048
lua Lua 352,317
go GO 227,763
ts TypeScript 195,254
C C 134,537
scala Scala 92,052
hh C++ 67,161
H C++ 55,899
tsx TypeScript 33,107
rs Rust 29,693
phpt PHP 9,702
c++ C++ 1,342
h++ C++ 791
php3 PHP 540
phps PHP 270
php5 PHP 166
php4 PHP 29

Preprocessing

Tokenization: The BLOOM tokenizer (link), a learned subword tokenizer trained using:

  • A byte-level Byte Pair Encoding (BPE) algorithm

  • A simple pre-tokenization rule, no normalization

  • A vocabulary size of 250,680

It was trained on a subset of a preliminary version of the corpus using alpha-weighting per language.

Speeds, Sizes, Times

Training logs: Tensorboard link

  • Dates:

    • Started 11th March, 2022 11:42am PST

    • Estimated end: 5th July, 2022

  • Checkpoint size:

    • Bf16 weights: 329GB

    • Full checkpoint with optimizer states: 2.3TB

  • Training throughput: About 150 TFLOP per GPU per second

  • Number of epochs: 1

  • Estimated cost of training: Equivalent of $2-5M in cloud computing (including preliminary experiments)

  • Server training location: Île-de-France, France

Environmental Impact

The training supercomputer, Jean Zay (website), uses mostly nuclear energy. The heat generated by it is reused for heating campus housing.

Estimated carbon emissions: (Forthcoming.)

Estimated electricity usage: (Forthcoming.)


Uses

This section addresses questions around how the model is intended to be used, discusses the foreseeable users of the model (including those affected by the model), and describes uses that are considered out of scope or misuse of the model. It is useful for anyone considering using the model or who is affected by the model.

Click to expand

How to use

This model can be easily used and deployed using HuggingFace's ecosystem. This needs transformers and accelerate installed. The model can be downloaded as follows:

Intended Use

This model is being created in order to enable public research on large language models (LLMs). LLMs are intended to be used for language generation or as a pretrained base model that can be further fine-tuned for specific tasks. Use cases below are not exhaustive.

Direct Use

  • Text generation

  • Exploring characteristics of language generated by a language model

    • Examples: Cloze tests, counterfactuals, generations with reframings

Downstream Use

  • Tasks that leverage language models include: Information Extraction, Question Answering, Summarization

Misuse and Out-of-scope Use

This section addresses what users ought not do with the model.

See the BLOOM License, Attachment A, for detailed usage restrictions. The below list is non-exhaustive, but lists some easily foreseeable problematic use cases.

Out-of-scope Uses

Using the model in high-stakes settings is out of scope for this model. The model is not designed for critical decisions nor uses with any material consequences on an individual's livelihood or wellbeing. The model outputs content that appears factual but may not be correct.

Out-of-scope Uses Include:

  • Usage in biomedical domains, political and legal domains, or finance domains

  • Usage for evaluating or scoring individuals, such as for employment, education, or credit

  • Applying the model for critical automatic decisions, generating factual content, creating reliable summaries, or generating predictions that must be correct

Misuse

Intentionally using the model for harm, violating human rights, or other kinds of malicious activities, is a misuse of this model. This includes:

  • Spam generation

  • Disinformation and influence operations

  • Disparagement and defamation

  • Harassment and abuse

  • Deception

  • Unconsented impersonation and imitation

  • Unconsented surveillance

  • Generating content without attribution to the model, as specified in the RAIL License, Use Restrictions

Intended Users

Direct Users

  • General Public

  • Researchers

  • Students

  • Educators

  • Engineers/developers

  • Non-commercial entities

  • Community advocates, including human and civil rights groups

Indirect Users

Others Affected (Parties Prenantes)

  • People and groups referred to by the LLM

  • People and groups exposed to outputs of, or decisions based on, the LLM

  • People and groups whose original work is included in the LLM


Risks and Limitations

This section identifies foreseeable harms and misunderstandings.

Click to expand

Model may:

  • Overrepresent some viewpoints and underrepresent others

  • Contain stereotypes

  • Contain personal information

  • Generate:

    • Hateful, abusive, or violent language

    • Discriminatory or prejudicial language

    • Content that may not be appropriate for all settings, including sexual content

  • Make errors, including producing incorrect information as if it were factual

  • Generate irrelevant or repetitive outputs

  • Induce users into attributing human traits to it, such as sentience or consciousness


Evaluation

This section describes the evaluation protocols and provides the results.

Click to expand

Metrics

This section describes the different ways performance is calculated and why.

Includes:

Metric Why chosen
Perplexity Standard metric for quantifying model improvements during training
Cross Entropy Loss Standard objective for language models.

And multiple different metrics for specific tasks. (More evaluation metrics forthcoming upon completion of evaluation protocol.)

Factors

This section lists some different aspects of BLOOM models. Its focus is on aspects that are likely to give rise to high variance in model behavior.

  • Language, such as English or Yoruba

  • Domain, such as newswire or stories

  • Demographic characteristics, such as gender or nationality

Results

Results are based on the Factors and Metrics.

Zero-shot evaluations:

WARNING: These are intermediate results

See this repository for JSON files: https://github.com/bigscience-workshop/evaluation-results

Task Language Metric BLOOM-176B OPT-175B*
arc_challenge eng acc ↑ 0.411 0.412
arc_easy eng acc ↑ 0.726 0.751
axb (Median of 10 prompts) eng acc ↑ 0.575 0.532
axg (Median of 10 prompts) eng acc ↑ 0.525 0.548
boolq (Median of 11 prompts) eng acc ↑ 0.635 0.622
cb (Median of 15 prompts) eng acc ↑ 0.339 0.411
cola (Median of 5 prompts) eng acc ↑ 0.39 0.444
copa (Median of 9 prompts) eng acc ↑ 0.56 0.55
crows_pairs_english (Median of 6 prompts) eng acc ↑ 0.5 0.502
crows_pairs_french (Median of 7 prompts) fra acc ↑ 0.506 0.499
diabla (Median of 2 prompts) eng acc ↑ 0.295 0.289
gsarti/flores_101_afr afr byte_perplexity ↓ 4.254 3.381
gsarti/flores_101_amh amh byte_perplexity ↓ 3.717 3.87
gsarti/flores_101_ara ara byte_perplexity ↓ 1.705 2.42
gsarti/flores_101_asm asm byte_perplexity ↓ 6.577 3.028
gsarti/flores_101_ast ast byte_perplexity ↓ 2.856 4.737
gsarti/flores_101_azj azj byte_perplexity ↓ 4.807 4.767
gsarti/flores_101_bel bel byte_perplexity ↓ 2.731 2.557
gsarti/flores_101_ben ben byte_perplexity ↓ 5.993 2.243
gsarti/flores_101_bos bos byte_perplexity ↓ 3.594 2.668
gsarti/flores_101_bul bul byte_perplexity ↓ 2.159 2.099
gsarti/flores_101_cat cat byte_perplexity ↓ 2.168 2.837
gsarti/flores_101_ceb ceb byte_perplexity ↓ 5.287 3.636
gsarti/flores_101_ces ces byte_perplexity ↓ 3.452 2.749
gsarti/flores_101_ckb ckb byte_perplexity ↓ 3.705 4.688
gsarti/flores_101_cym cym byte_perplexity ↓ 7.089 5.075
gsarti/flores_101_dan dan byte_perplexity ↓ 3.43 2.492
gsarti/flores_101_deu deu byte_perplexity ↓ 2.338 2.099
gsarti/flores_101_ell ell byte_perplexity ↓ 1.96 1.811
gsarti/flores_101_eng eng byte_perplexity ↓ 1.882 1.9
gsarti/flores_101_est est byte_perplexity ↓ 5.774 3.533
gsarti/flores_101_fas fas byte_perplexity ↓ 2.431 2.444
gsarti/flores_101_fin fin byte_perplexity ↓ 4.304 2.601
gsarti/flores_101_fra fra byte_perplexity ↓ 1.937 1.984
gsarti/flores_101_ful ful byte_perplexity ↓ 9.74 11.84
gsarti/flores_101_gle gle byte_perplexity ↓ 6.035 3.914
gsarti/flores_101_glg glg byte_perplexity ↓ 2.365 3.015
gsarti/flores_101_guj guj byte_perplexity ↓ 5.707 2.438
gsarti/flores_101_hau hau byte_perplexity ↓ 8.855 5.283
gsarti/flores_101_heb heb byte_perplexity ↓ 2.921 2.903
gsarti/flores_101_hin hin byte_perplexity ↓ 5.452 1.86
gsarti/flores_101_hrv hrv byte_perplexity ↓ 3.706 2.715
gsarti/flores_101_hun hun byte_perplexity ↓ 4.059 2.865
gsarti/flores_101_hye hye byte_perplexity ↓ 3.127 3.411
gsarti/flores_101_ibo ibo byte_perplexity ↓ 3.95 8.008
gsarti/flores_101_ind ind byte_perplexity ↓ 1.976 2.632
gsarti/flores_101_isl isl byte_perplexity ↓ 5.501 4.701
gsarti/flores_101_ita ita byte_perplexity ↓ 2.314 2.104
gsarti/flores_101_jav jav byte_perplexity ↓ 4.942 8.16
gsarti/flores_101_jpn jpn byte_perplexity ↓ 2.259 2.198
gsarti/flores_101_kam kam byte_perplexity ↓ 9.743 10.981
gsarti/flores_101_kan kan byte_perplexity ↓ 6.234 2.373
gsarti/flores_101_kat kat byte_perplexity ↓ 2.051 2.466
gsarti/flores_101_kaz kaz byte_perplexity ↓ 3.039 4.376
gsarti/flores_101_kea kea byte_perplexity ↓ 7.147 9.632
gsarti/flores_101_khm khm byte_perplexity ↓ 3.367 2.646
gsarti/flores_101_kir kir byte_perplexity ↓ 3.241 4.522
gsarti/flores_101_kor kor byte_perplexity ↓ 2.902 3.376
gsarti/flores_101_lao lao byte_perplexity ↓ 2.331 3.106
gsarti/flores_101_lav lav byte_perplexity ↓ 5.224 4.811
gsarti/flores_101_lin lin byte_perplexity ↓ 4.847 8.871
gsarti/flores_101_lit lit byte_perplexity ↓ 4.543 5.183
gsarti/flores_101_ltz ltz byte_perplexity ↓ 5.591 7.158
gsarti/flores_101_lug lug byte_perplexity ↓ 5.43 7.399
gsarti/flores_101_luo luo byte_perplexity ↓ 12.031 11.951
gsarti/flores_101_mal mal byte_perplexity ↓ 4.794 2.054
gsarti/flores_101_mar mar byte_perplexity ↓ 6.857 2.274
gsarti/flores_101_mkd mkd byte_perplexity ↓ 2.335 2.538
gsarti/flores_101_mlt mlt byte_perplexity ↓ 9.041 5.996
gsarti/flores_101_mon mon byte_perplexity ↓ 3.095 4.519
gsarti/flores_101_mri mri byte_perplexity ↓ 5.266 4.438
gsarti/flores_101_msa msa byte_perplexity ↓ 2.222 2.935
gsarti/flores_101_mya mya byte_perplexity ↓ 2.523 2.413
gsarti/flores_101_nld nld byte_perplexity ↓ 2.799 2.293
gsarti/flores_101_nob nob byte_perplexity ↓ 3.629 2.593
gsarti/flores_101_npi npi byte_perplexity ↓ 6.666 2.499
gsarti/flores_101_nso nso byte_perplexity ↓ 5.015 8.485
gsarti/flores_101_nya nya byte_perplexity ↓ 4.938 7.548
gsarti/flores_101_oci oci byte_perplexity ↓ 3.607 4.936
gsarti/flores_101_orm orm byte_perplexity ↓ 11.316 7.145
gsarti/flores_101_ory ory byte_perplexity ↓ 5.982 2.668
gsarti/flores_101_pan pan byte_perplexity ↓ 4.772 2.782
gsarti/flores_101_pol pol byte_perplexity ↓ 3.012 2.432
gsarti/flores_101_por por byte_perplexity ↓ 1.841 2.178
gsarti/flores_101_pus pus byte_perplexity ↓ 4.624 4.785
gsarti/flores_101_ron ron byte_perplexity ↓ 3.05 2.197
gsarti/flores_101_rus rus byte_perplexity ↓ 1.708 1.689
gsarti/flores_101_slk slk byte_perplexity ↓ 4.038 3.419
gsarti/flores_101_slv slv byte_perplexity ↓ 4.141 3.582
gsarti/flores_101_sna sna byte_perplexity ↓ 4.711 5.588
gsarti/flores_101_snd snd byte_perplexity ↓ 4.206 5.667
gsarti/flores_101_som som byte_perplexity ↓ 9.154 4.788
gsarti/flores_101_spa spa byte_perplexity ↓ 1.796 2.098
gsarti/flores_101_srp srp byte_perplexity ↓ 2.241 2.688
gsarti/flores_101_swe swe byte_perplexity ↓ 3.345 2.468
gsarti/flores_101_swh swh byte_perplexity ↓ 2.684 4.473
gsarti/flores_101_tam tam byte_perplexity ↓ 5.165 2.024
gsarti/flores_101_tel tel byte_perplexity ↓ 6.81 2.407
gsarti/flores_101_tgk tgk byte_perplexity ↓ 3.785 4.899
gsarti/flores_101_tgl tgl byte_perplexity ↓ 3.75 2.738
gsarti/flores_101_tha tha byte_perplexity ↓ 2.104 2.035
gsarti/flores_101_tur tur byte_perplexity ↓ 3.318 2.622
gsarti/flores_101_ukr ukr byte_perplexity ↓ 2.089 1.93
gsarti/flores_101_umb umb byte_perplexity ↓ 11.766 11.64
gsarti/flores_101_urd urd byte_perplexity ↓ 1.779 2.982
gsarti/flores_101_uzb uzb byte_perplexity ↓ 8.5 13.209
gsarti/flores_101_vie vie byte_perplexity ↓ 1.659 2.229
gsarti/flores_101_wol wol byte_perplexity ↓ 6.142 13.945
gsarti/flores_101_xho xho byte_perplexity ↓ 4.69 8.42
gsarti/flores_101_yor yor byte_perplexity ↓ 4.361 7.636
gsarti/flores_101_zho_simpl zho_simpl byte_perplexity ↓ 2.118 5.113
gsarti/flores_101_zho_trad zho_trad byte_perplexity ↓ 2.274 5.67
gsarti/flores_101_zul zul byte_perplexity ↓ 6.017 7.341
headqa esp acc ↑ 0.346 0.244
hellaswag eng acc ↑ 0.535 0.592
lambada_mt_de deu acc ↑ 0.329 0.358
lambada_mt_en eng acc ↑ 0.672 0.747
lambada_mt_es esp acc ↑ 0.476 0.397
lambada_mt_it ita acc ↑ 0.406 0.409
logiqa eng acc ↑ 0.235 0.244
mathqa eng acc ↑ 0.277 0.268
mc_taco eng em ↑ 0.131 0.124
mnli (Median of 15 prompts) eng acc ↑ 0.355 0.36
mnli_mismatched (Median of 15 prompts) eng acc ↑ 0.355 0.36
mrpc eng acc ↑ 0.387 0.446
multirc (Median of 11 prompts) eng acc ↑ 0.571 0.599
openbookqa eng acc ↑ 0.312 0.322
piqa eng acc ↑ 0.781 0.791
prost eng acc ↑ 0.298 0.299
pubmedqa eng acc ↑ 0.741 0.709
qnli eng acc ↑ 0.517 0.554
qqp (Median of 7 prompts) eng acc ↑ 0.588 0.395
race eng acc ↑ 0.39 0.402
rte (Median of 6 prompts) eng acc ↑ 0.52 0.495
sciq eng acc ↑ 0.936 0.948
sst (Median of 6 prompts) eng acc ↑ 0.604 0.647
triviaqa eng acc ↑ 0.183 0.342
tydiqa_primary (Median of 16 prompts) eng acc ↑ 0.281 0.148
webqs eng acc ↑ 0.062 0.159
wic (Median of 11 prompts) eng acc ↑ 0.506 0.498
winogrande eng acc ↑ 0.71 0.736
wnli (Median of 6 prompts) eng acc ↑ 0.57 0.563
wsc (Median of 11 prompts) eng acc ↑ 0.519 0.413
humaneval python pass@1 ↑ 0.155 0.0
humaneval python pass@10 ↑ 0.322 0.0
humaneval python pass@100 ↑ 0.555 0.003

Train-time Evaluation:

Final checkpoint after 95K steps:

  • Training Loss: 1.939

  • Validation Loss: 2.061

  • Perplexity: 7.045

For more see: https://huggingface.co/bigscience/tr11-176B-ml-logs


Recommendations

This section provides information on warnings and potential mitigations.

Click to expand
  • Indirect users should be made aware when the content they're working with is created by the LLM.

  • Users should be aware of Risks and Limitations, and include an appropriate age disclaimer or blocking interface as necessary.

  • Models trained or finetuned downstream of BLOOM LM should include an updated Model Card.

  • Users of the model should provide mechanisms for those affected to provide feedback, such as an email address for comments.


Glossary and Calculations

This section defines common terms and how metrics are calculated.

Click to expand

More Information

This section provides links to writing on dataset creation, technical specifications, lessons learned, and initial results.

Click to expand

Intermediate checkpoints

For academic (or any) usage, we published the intermediate checkpoints, corresponding to the model state at each 5000 steps. Please follow this link to get these checkpoints.

Dataset Creation

Blog post detailing the design choices during the dataset creation: https://bigscience.huggingface.co/blog/building-a-tb-scale-multilingual-dataset-for-language-modeling

Technical Specifications

Blog post summarizing how the architecture, size, shape, and pre-training duration where selected: https://bigscience.huggingface.co/blog/what-language-model-to-train-if-you-have-two-million-gpu-hours

More details on the architecture/optimizer: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml

Blog post on the hardware/engineering side: https://bigscience.huggingface.co/blog/which-hardware-to-train-a-176b-parameters-model

Details on the distributed setup used for the training: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml

Tensorboard updated during the training: https://huggingface.co/bigscience/tr11-176B-ml-logs/tensorboard#scalars&tagFilter=loss

Lessons

Insights on how to approach training, negative results: https://github.com/bigscience-workshop/bigscience/blob/master/train/lessons-learned.md

Details on the obstacles overcome during the preparation on the engineering side (instabilities, optimization of training throughput, so many technical tricks and questions): https://github.com/bigscience-workshop/bigscience/blob/master/train/tr11-176B-ml/chronicles.md

Initial Results

Initial prompting experiments using interim checkpoints: https://huggingface.co/spaces/bigscience/bloom-book

Original checkpoints

The checkpoints in this repo correspond to the HuggingFace Transformers format. If you want to use our fork of Megatron-DeepSpeed that the model was trained with, you'd want to use this repo instead.


Model Card Authors

Ordered roughly chronologically and by amount of time spent.

Margaret Mitchell, Giada Pistilli, Yacine Jernite, Ezinwanne Ozoani, Marissa Gerchick, Nazneen Rajani, Sasha Luccioni, Irene Solaiman, Maraim Masoud, Somaieh Nikpoor, Carlos Muñoz Ferrandis, Stas Bekman, Christopher Akiki, Danish Contractor, David Lansky, Angelina McMillan-Major, Tristan Thrush, Suzana Ilić, Gérard Dupont, Shayne Longpre, Manan Dey, Stella Biderman, Douwe Kiela, Emi Baylor, Teven Le Scao, Aaron Gokaslan, Julien Launay, Niklas Muennighoff