Text2Text Generation
Transformers
PyTorch
mt5
Eval Results
Inference Endpoints
Files changed (1) hide show
  1. README.md +43 -32
README.md CHANGED
@@ -69,7 +69,7 @@ language:
69
  - my
70
  - ne
71
  - nl
72
- - no
73
  - ny
74
  - pa
75
  - pl
@@ -105,24 +105,35 @@ language:
105
  - yo
106
  - zh
107
  - zu
108
- pipeline_tag: text-generation
109
  widget:
110
- - text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous review as positive, neutral or negative?"
111
- example_title: "zh-en sentiment"
112
- - text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?"
113
- example_title: "zh-zh sentiment"
114
- - text: "Suggest at least five related search terms to \"Mạng neural nhân tạo\"."
115
- example_title: "vi-en query"
116
- - text: "Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels»."
117
- example_title: "fr-fr query"
118
- - text: "Explain in a sentence in Telugu what is backpropagation in neural networks."
119
- example_title: "te-en qa"
120
- - text: "Why is the sky blue?"
121
- example_title: "en-en qa"
122
- - text: "Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is \"Heroes Come in All Shapes and Sizes\". Story (in Spanish):"
123
- example_title: "es-en fable"
124
- - text: "Write a fable about wood elves living in a forest that is suddenly invaded by ogres. The fable is a masterpiece that has achieved praise worldwide and its moral is \"Violence is the last refuge of the incompetent\". Fable (in Hindi):"
125
- example_title: "hi-en fable"
 
 
 
 
 
 
 
 
 
 
 
126
  model-index:
127
  - name: mt0-xxl-p3
128
  results:
@@ -312,7 +323,7 @@ model-index:
312
  revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
313
  metrics:
314
  - type: Accuracy
315
- value: 61.0
316
  - task:
317
  type: Natural language inference
318
  dataset:
@@ -428,7 +439,7 @@ model-index:
428
  dataset:
429
  type: story_cloze
430
  name: StoryCloze (2016)
431
- config: "2016"
432
  split: validation
433
  revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
434
  metrics:
@@ -444,7 +455,7 @@ model-index:
444
  revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
445
  metrics:
446
  - type: Accuracy
447
- value: 91.0
448
  - task:
449
  type: Sentence completion
450
  dataset:
@@ -455,7 +466,7 @@ model-index:
455
  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
456
  metrics:
457
  - type: Accuracy
458
- value: 79.0
459
  - task:
460
  type: Sentence completion
461
  dataset:
@@ -466,7 +477,7 @@ model-index:
466
  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
467
  metrics:
468
  - type: Accuracy
469
- value: 80.0
470
  - task:
471
  type: Sentence completion
472
  dataset:
@@ -477,7 +488,7 @@ model-index:
477
  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
478
  metrics:
479
  - type: Accuracy
480
- value: 87.0
481
  - task:
482
  type: Sentence completion
483
  dataset:
@@ -488,7 +499,7 @@ model-index:
488
  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
489
  metrics:
490
  - type: Accuracy
491
- value: 90.0
492
  - task:
493
  type: Sentence completion
494
  dataset:
@@ -499,7 +510,7 @@ model-index:
499
  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
500
  metrics:
501
  - type: Accuracy
502
- value: 56.0
503
  - task:
504
  type: Sentence completion
505
  dataset:
@@ -510,7 +521,7 @@ model-index:
510
  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
511
  metrics:
512
  - type: Accuracy
513
- value: 75.0
514
  - task:
515
  type: Sentence completion
516
  dataset:
@@ -521,7 +532,7 @@ model-index:
521
  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
522
  metrics:
523
  - type: Accuracy
524
- value: 84.0
525
  - task:
526
  type: Sentence completion
527
  dataset:
@@ -532,7 +543,7 @@ model-index:
532
  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
533
  metrics:
534
  - type: Accuracy
535
- value: 77.0
536
  - task:
537
  type: Sentence completion
538
  dataset:
@@ -543,7 +554,7 @@ model-index:
543
  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
544
  metrics:
545
  - type: Accuracy
546
- value: 76.0
547
  - task:
548
  type: Sentence completion
549
  dataset:
@@ -554,7 +565,7 @@ model-index:
554
  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
555
  metrics:
556
  - type: Accuracy
557
- value: 84.0
558
  - task:
559
  type: Sentence completion
560
  dataset:
@@ -565,7 +576,7 @@ model-index:
565
  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
566
  metrics:
567
  - type: Accuracy
568
- value: 79.0
569
  - task:
570
  type: Sentence completion
571
  dataset:
 
69
  - my
70
  - ne
71
  - nl
72
+ - 'no'
73
  - ny
74
  - pa
75
  - pl
 
105
  - yo
106
  - zh
107
  - zu
108
+ pipeline_tag: text2text-generation
109
  widget:
110
+ - text: >-
111
+ 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous
112
+ review as positive, neutral or negative?
113
+ example_title: zh-en sentiment
114
+ - text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?
115
+ example_title: zh-zh sentiment
116
+ - text: Suggest at least five related search terms to "Mạng neural nhân tạo".
117
+ example_title: vi-en query
118
+ - text: >-
119
+ Proposez au moins cinq mots clés concernant «Réseau de neurones
120
+ artificiels».
121
+ example_title: fr-fr query
122
+ - text: Explain in a sentence in Telugu what is backpropagation in neural networks.
123
+ example_title: te-en qa
124
+ - text: Why is the sky blue?
125
+ example_title: en-en qa
126
+ - text: >-
127
+ Write a fairy tale about a troll saving a princess from a dangerous dragon.
128
+ The fairy tale is a masterpiece that has achieved praise worldwide and its
129
+ moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish):
130
+ example_title: es-en fable
131
+ - text: >-
132
+ Write a fable about wood elves living in a forest that is suddenly invaded
133
+ by ogres. The fable is a masterpiece that has achieved praise worldwide and
134
+ its moral is "Violence is the last refuge of the incompetent". Fable (in
135
+ Hindi):
136
+ example_title: hi-en fable
137
  model-index:
138
  - name: mt0-xxl-p3
139
  results:
 
323
  revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
324
  metrics:
325
  - type: Accuracy
326
+ value: 61
327
  - task:
328
  type: Natural language inference
329
  dataset:
 
439
  dataset:
440
  type: story_cloze
441
  name: StoryCloze (2016)
442
+ config: '2016'
443
  split: validation
444
  revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
445
  metrics:
 
455
  revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
456
  metrics:
457
  - type: Accuracy
458
+ value: 91
459
  - task:
460
  type: Sentence completion
461
  dataset:
 
466
  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
467
  metrics:
468
  - type: Accuracy
469
+ value: 79
470
  - task:
471
  type: Sentence completion
472
  dataset:
 
477
  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
478
  metrics:
479
  - type: Accuracy
480
+ value: 80
481
  - task:
482
  type: Sentence completion
483
  dataset:
 
488
  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
489
  metrics:
490
  - type: Accuracy
491
+ value: 87
492
  - task:
493
  type: Sentence completion
494
  dataset:
 
499
  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
500
  metrics:
501
  - type: Accuracy
502
+ value: 90
503
  - task:
504
  type: Sentence completion
505
  dataset:
 
510
  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
511
  metrics:
512
  - type: Accuracy
513
+ value: 56
514
  - task:
515
  type: Sentence completion
516
  dataset:
 
521
  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
522
  metrics:
523
  - type: Accuracy
524
+ value: 75
525
  - task:
526
  type: Sentence completion
527
  dataset:
 
532
  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
533
  metrics:
534
  - type: Accuracy
535
+ value: 84
536
  - task:
537
  type: Sentence completion
538
  dataset:
 
543
  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
544
  metrics:
545
  - type: Accuracy
546
+ value: 77
547
  - task:
548
  type: Sentence completion
549
  dataset:
 
554
  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
555
  metrics:
556
  - type: Accuracy
557
+ value: 76
558
  - task:
559
  type: Sentence completion
560
  dataset:
 
565
  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
566
  metrics:
567
  - type: Accuracy
568
+ value: 84
569
  - task:
570
  type: Sentence completion
571
  dataset:
 
576
  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
577
  metrics:
578
  - type: Accuracy
579
+ value: 79
580
  - task:
581
  type: Sentence completion
582
  dataset: