Edit model card

layoutlmv3-violations-test

This model is a fine-tuned version of microsoft/layoutlmv3-base on the violations dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3685
  • Precision: 0.9483
  • Recall: 0.9116
  • F1: 0.9296
  • Accuracy: 0.9503

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 9.0909 100 0.2997 0.9543 0.9227 0.9382 0.9558
No log 18.1818 200 0.3729 0.9425 0.9061 0.9239 0.9448
No log 27.2727 300 0.3408 0.9543 0.9227 0.9382 0.9558
No log 36.3636 400 0.3566 0.9483 0.9116 0.9296 0.9503
0.0997 45.4545 500 0.3685 0.9483 0.9116 0.9296 0.9503
0.0997 54.5455 600 0.3736 0.9483 0.9116 0.9296 0.9503
0.0997 63.6364 700 0.3866 0.9483 0.9116 0.9296 0.9503
0.0997 72.7273 800 0.3990 0.9483 0.9116 0.9296 0.9503
0.0997 81.8182 900 0.4018 0.9483 0.9116 0.9296 0.9503
0.001 90.9091 1000 0.3979 0.9483 0.9116 0.9296 0.9503

Framework versions

  • Transformers 4.42.1
  • Pytorch 2.3.1+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for billa1972/layoutlmv3-violations-test

Finetuned
(213)
this model

Evaluation results