finetuned-ner-conll / README.md
blaze999's picture
Update README.md
8c23618 verified
|
raw
history blame
2.47 kB
metadata
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: finetuned-ner-conll
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: validation
          args: conll2003
        metrics:
          - name: Precision
            type: precision
            value: 0.9285243741765481
          - name: Recall
            type: recall
            value: 0.9488387748232918
          - name: F1
            type: f1
            value: 0.9385716663892125
          - name: Accuracy
            type: accuracy
            value: 0.9862247601106728
pipeline_tag: token-classification
widget:
  - text: Saketh Lives in India
    example_title: Classification
  - text: Apollo hospitals is in India
    example_title: Classification
  - text: Saketh works for Apollo
    example_title: Classification

finetuned-ner-conll

This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Precision: 0.9285
  • Recall: 0.9488
  • F1: 0.9386
  • Accuracy: 0.9862

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.218 1.0 878 nan 0.9080 0.9367 0.9221 0.9827
0.0449 2.0 1756 nan 0.9277 0.9485 0.9380 0.9857
0.0232 3.0 2634 nan 0.9285 0.9488 0.9386 0.9862

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.1