metadata
license: mit
tags:
- generated_from_trainer
datasets:
- null
metrics:
- accuracy
model-index:
- name: BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-1
results:
- task:
name: Text Classification
type: text-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.66
BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-1
This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9645
- Accuracy: 0.66
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 57 | 0.9439 | 0.54 |
No log | 2.0 | 114 | 0.9126 | 0.56 |
No log | 3.0 | 171 | 0.8494 | 0.64 |
No log | 4.0 | 228 | 0.9225 | 0.64 |
No log | 5.0 | 285 | 0.9457 | 0.64 |
No log | 6.0 | 342 | 0.8899 | 0.66 |
No log | 7.0 | 399 | 0.9066 | 0.62 |
No log | 8.0 | 456 | 0.9356 | 0.66 |
0.5861 | 9.0 | 513 | 0.9550 | 0.66 |
0.5861 | 10.0 | 570 | 0.9645 | 0.66 |
Framework versions
- Transformers 4.10.2
- Pytorch 1.9.0+cu102
- Datasets 1.12.0
- Tokenizers 0.10.3