SentenceTransformer based on BXresearch/DeBERTa2-0.9B-ST-v2
This is a sentence-transformers model finetuned from BXresearch/DeBERTa2-0.9B-ST-v2 on the sentence-transformers/stsb dataset. It maps sentences & paragraphs to a 1536-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BXresearch/DeBERTa2-0.9B-ST-v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1536 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 1536, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa2-0.9B-ST-stsb")
# Run inference
sentences = [
'The boy is playing the piano.',
'The woman is pouring oil into the pan.',
'A small black and white dog is swimming in water.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1536]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9174 |
spearman_cosine | 0.9293 |
pearson_manhattan | 0.9283 |
spearman_manhattan | 0.9298 |
pearson_euclidean | 0.9287 |
spearman_euclidean | 0.9302 |
pearson_dot | 0.9016 |
spearman_dot | 0.9063 |
pearson_max | 0.9287 |
spearman_max | 0.9302 |
Binary Classification
- Dataset:
allNLI-dev
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.7539 |
cosine_accuracy_threshold | 0.7934 |
cosine_f1 | 0.6264 |
cosine_f1_threshold | 0.7288 |
cosine_precision | 0.5644 |
cosine_recall | 0.7037 |
cosine_ap | 0.5952 |
dot_accuracy | 0.7461 |
dot_accuracy_threshold | 853.77 |
dot_f1 | 0.6106 |
dot_f1_threshold | 685.5369 |
dot_precision | 0.4759 |
dot_recall | 0.8519 |
dot_ap | 0.5773 |
manhattan_accuracy | 0.7539 |
manhattan_accuracy_threshold | 654.8433 |
manhattan_f1 | 0.6244 |
manhattan_f1_threshold | 811.6582 |
manhattan_precision | 0.4929 |
manhattan_recall | 0.8519 |
manhattan_ap | 0.5966 |
euclidean_accuracy | 0.7539 |
euclidean_accuracy_threshold | 21.0488 |
euclidean_f1 | 0.6244 |
euclidean_f1_threshold | 26.1134 |
euclidean_precision | 0.4929 |
euclidean_recall | 0.8519 |
euclidean_ap | 0.595 |
max_accuracy | 0.7539 |
max_accuracy_threshold | 853.77 |
max_f1 | 0.6264 |
max_f1_threshold | 811.6582 |
max_precision | 0.5644 |
max_recall | 0.8519 |
max_ap | 0.5966 |
Binary Classification
- Dataset:
Qnli-dev
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.7148 |
cosine_accuracy_threshold | 0.7153 |
cosine_f1 | 0.7224 |
cosine_f1_threshold | 0.6805 |
cosine_precision | 0.6786 |
cosine_recall | 0.7724 |
cosine_ap | 0.755 |
dot_accuracy | 0.6914 |
dot_accuracy_threshold | 720.3964 |
dot_f1 | 0.7059 |
dot_f1_threshold | 706.5613 |
dot_precision | 0.6443 |
dot_recall | 0.7805 |
dot_ap | 0.7012 |
manhattan_accuracy | 0.7227 |
manhattan_accuracy_threshold | 760.718 |
manhattan_f1 | 0.728 |
manhattan_f1_threshold | 807.8878 |
manhattan_precision | 0.6884 |
manhattan_recall | 0.7724 |
manhattan_ap | 0.7705 |
euclidean_accuracy | 0.7266 |
euclidean_accuracy_threshold | 25.6344 |
euclidean_f1 | 0.7244 |
euclidean_f1_threshold | 25.6344 |
euclidean_precision | 0.7023 |
euclidean_recall | 0.748 |
euclidean_ap | 0.7674 |
max_accuracy | 0.7266 |
max_accuracy_threshold | 760.718 |
max_f1 | 0.728 |
max_f1_threshold | 807.8878 |
max_precision | 0.7023 |
max_recall | 0.7805 |
max_ap | 0.7705 |
Training Details
Training Dataset
sentence-transformers/stsb
- Dataset: sentence-transformers/stsb at ab7a5ac
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 9.81 tokens
- max: 27 tokens
- min: 5 tokens
- mean: 9.74 tokens
- max: 25 tokens
- min: 0.0
- mean: 0.54
- max: 1.0
- Samples:
sentence1 sentence2 score A plane is taking off.
An air plane is taking off.
1.0
A man is playing a large flute.
A man is playing a flute.
0.76
A man is spreading shreded cheese on a pizza.
A man is spreading shredded cheese on an uncooked pizza.
0.76
- Loss:
AnglELoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_angle_sim" }
Evaluation Dataset
sentence-transformers/stsb
- Dataset: sentence-transformers/stsb at ab7a5ac
- Size: 512 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 11.16 tokens
- max: 26 tokens
- min: 6 tokens
- mean: 11.17 tokens
- max: 23 tokens
- min: 0.0
- mean: 0.47
- max: 1.0
- Samples:
sentence1 sentence2 score A man with a hard hat is dancing.
A man wearing a hard hat is dancing.
1.0
A young child is riding a horse.
A child is riding a horse.
0.95
A man is feeding a mouse to a snake.
The man is feeding a mouse to the snake.
1.0
- Loss:
AnglELoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_angle_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_eval_batch_size
: 256gradient_accumulation_steps
: 2learning_rate
: 1.5e-05weight_decay
: 5e-05num_train_epochs
: 2lr_scheduler_type
: cosine_with_min_lrlr_scheduler_kwargs
: {'num_cycles': 0.5, 'min_lr': 2e-06}warmup_ratio
: 0.2save_safetensors
: Falsefp16
: Truepush_to_hub
: Truehub_model_id
: bobox/DeBERTa2-0.9B-ST-stsb-checkpoints-tmphub_strategy
: all_checkpointsbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonelearning_rate
: 1.5e-05weight_decay
: 5e-05adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: cosine_with_min_lrlr_scheduler_kwargs
: {'num_cycles': 0.5, 'min_lr': 2e-06}warmup_ratio
: 0.2warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Falsesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: bobox/DeBERTa2-0.9B-ST-stsb-checkpoints-tmphub_strategy
: all_checkpointshub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss | Qnli-dev_max_ap | allNLI-dev_max_ap | sts-test_spearman_cosine |
---|---|---|---|---|---|---|
0.0056 | 2 | 2.6549 | - | - | - | - |
0.0111 | 4 | 2.7355 | - | - | - | - |
0.0167 | 6 | 3.6211 | - | - | - | - |
0.0223 | 8 | 3.0686 | - | - | - | - |
0.0278 | 10 | 3.4113 | - | - | - | - |
0.0334 | 12 | 2.4857 | - | - | - | - |
0.0389 | 14 | 2.4288 | - | - | - | - |
0.0445 | 16 | 2.6203 | - | - | - | - |
0.0501 | 18 | 2.7441 | - | - | - | - |
0.0556 | 20 | 3.4263 | - | - | - | - |
0.0612 | 22 | 2.3565 | - | - | - | - |
0.0668 | 24 | 2.5596 | - | - | - | - |
0.0723 | 26 | 3.0866 | - | - | - | - |
0.0779 | 28 | 3.223 | - | - | - | - |
0.0834 | 30 | 2.012 | - | - | - | - |
0.0890 | 32 | 3.2829 | - | - | - | - |
0.0946 | 34 | 3.9277 | - | - | - | - |
0.1001 | 36 | 2.785 | 2.6652 | 0.7960 | 0.6275 | 0.9294 |
0.1057 | 38 | 3.4966 | - | - | - | - |
0.1113 | 40 | 2.5923 | - | - | - | - |
0.1168 | 42 | 3.4418 | - | - | - | - |
0.1224 | 44 | 2.6519 | - | - | - | - |
0.1280 | 46 | 3.7746 | - | - | - | - |
0.1335 | 48 | 2.6736 | - | - | - | - |
0.1391 | 50 | 3.6764 | - | - | - | - |
0.1446 | 52 | 3.5311 | - | - | - | - |
0.1502 | 54 | 2.5869 | - | - | - | - |
0.1558 | 56 | 3.183 | - | - | - | - |
0.1613 | 58 | 2.747 | - | - | - | - |
0.1669 | 60 | 1.965 | - | - | - | - |
0.1725 | 62 | 2.1785 | - | - | - | - |
0.1780 | 64 | 2.5788 | - | - | - | - |
0.1836 | 66 | 3.1776 | - | - | - | - |
0.1892 | 68 | 2.6464 | - | - | - | - |
0.1947 | 70 | 2.7619 | - | - | - | - |
0.2003 | 72 | 3.0911 | 2.6171 | 0.7923 | 0.6295 | 0.9276 |
0.2058 | 74 | 2.4308 | - | - | - | - |
0.2114 | 76 | 3.2068 | - | - | - | - |
0.2170 | 78 | 2.4081 | - | - | - | - |
0.2225 | 80 | 2.3257 | - | - | - | - |
0.2281 | 82 | 3.0499 | - | - | - | - |
0.2337 | 84 | 3.2518 | - | - | - | - |
0.2392 | 86 | 2.7876 | - | - | - | - |
0.2448 | 88 | 2.7898 | - | - | - | - |
0.2503 | 90 | 2.7116 | - | - | - | - |
0.2559 | 92 | 3.0505 | - | - | - | - |
0.2615 | 94 | 2.5901 | - | - | - | - |
0.2670 | 96 | 1.9563 | - | - | - | - |
0.2726 | 98 | 2.1006 | - | - | - | - |
0.2782 | 100 | 2.1853 | - | - | - | - |
0.2837 | 102 | 2.327 | - | - | - | - |
0.2893 | 104 | 1.9937 | - | - | - | - |
0.2949 | 106 | 2.543 | - | - | - | - |
0.3004 | 108 | 1.9826 | 2.4596 | 0.7919 | 0.6329 | 0.9341 |
0.3060 | 110 | 3.0746 | - | - | - | - |
0.3115 | 112 | 2.4145 | - | - | - | - |
0.3171 | 114 | 2.244 | - | - | - | - |
0.3227 | 116 | 2.78 | - | - | - | - |
0.3282 | 118 | 2.8323 | - | - | - | - |
0.3338 | 120 | 2.4639 | - | - | - | - |
0.3394 | 122 | 2.9216 | - | - | - | - |
0.3449 | 124 | 2.0747 | - | - | - | - |
0.3505 | 126 | 2.7573 | - | - | - | - |
0.3561 | 128 | 3.7019 | - | - | - | - |
0.3616 | 130 | 3.3155 | - | - | - | - |
0.3672 | 132 | 3.625 | - | - | - | - |
0.3727 | 134 | 3.2889 | - | - | - | - |
0.3783 | 136 | 3.5936 | - | - | - | - |
0.3839 | 138 | 3.5932 | - | - | - | - |
0.3894 | 140 | 3.0457 | - | - | - | - |
0.3950 | 142 | 3.093 | - | - | - | - |
0.4006 | 144 | 2.7189 | 2.4698 | 0.7752 | 0.5896 | 0.9346 |
0.4061 | 146 | 3.2578 | - | - | - | - |
0.4117 | 148 | 3.3581 | - | - | - | - |
0.4172 | 150 | 2.9734 | - | - | - | - |
0.4228 | 152 | 3.0514 | - | - | - | - |
0.4284 | 154 | 3.1983 | - | - | - | - |
0.4339 | 156 | 2.9033 | - | - | - | - |
0.4395 | 158 | 2.9279 | - | - | - | - |
0.4451 | 160 | 3.1336 | - | - | - | - |
0.4506 | 162 | 3.1467 | - | - | - | - |
0.4562 | 164 | 3.0381 | - | - | - | - |
0.4618 | 166 | 3.068 | - | - | - | - |
0.4673 | 168 | 3.0261 | - | - | - | - |
0.4729 | 170 | 3.2867 | - | - | - | - |
0.4784 | 172 | 2.8474 | - | - | - | - |
0.4840 | 174 | 2.7982 | - | - | - | - |
0.4896 | 176 | 2.7945 | - | - | - | - |
0.4951 | 178 | 3.1312 | - | - | - | - |
0.5007 | 180 | 2.9704 | 2.4640 | 0.7524 | 0.6033 | 0.9242 |
0.5063 | 182 | 2.9856 | - | - | - | - |
0.5118 | 184 | 3.014 | - | - | - | - |
0.5174 | 186 | 3.0125 | - | - | - | - |
0.5229 | 188 | 2.8149 | - | - | - | - |
0.5285 | 190 | 2.7954 | - | - | - | - |
0.5341 | 192 | 3.078 | - | - | - | - |
0.5396 | 194 | 2.955 | - | - | - | - |
0.5452 | 196 | 2.9468 | - | - | - | - |
0.5508 | 198 | 3.0791 | - | - | - | - |
0.5563 | 200 | 2.998 | - | - | - | - |
0.5619 | 202 | 2.9068 | - | - | - | - |
0.5675 | 204 | 2.8283 | - | - | - | - |
0.5730 | 206 | 2.9216 | - | - | - | - |
0.5786 | 208 | 3.3441 | - | - | - | - |
0.5841 | 210 | 3.0 | - | - | - | - |
0.5897 | 212 | 2.9023 | - | - | - | - |
0.5953 | 214 | 2.8177 | - | - | - | - |
0.6008 | 216 | 2.8262 | 2.4979 | 0.7899 | 0.6037 | 0.9260 |
0.6064 | 218 | 2.7832 | - | - | - | - |
0.6120 | 220 | 3.0085 | - | - | - | - |
0.6175 | 222 | 2.8762 | - | - | - | - |
0.6231 | 224 | 3.147 | - | - | - | - |
0.6287 | 226 | 3.4262 | - | - | - | - |
0.6342 | 228 | 2.8271 | - | - | - | - |
0.6398 | 230 | 2.4024 | - | - | - | - |
0.6453 | 232 | 2.7556 | - | - | - | - |
0.6509 | 234 | 3.4652 | - | - | - | - |
0.6565 | 236 | 2.7235 | - | - | - | - |
0.6620 | 238 | 2.6498 | - | - | - | - |
0.6676 | 240 | 3.0933 | - | - | - | - |
0.6732 | 242 | 3.1193 | - | - | - | - |
0.6787 | 244 | 2.7249 | - | - | - | - |
0.6843 | 246 | 2.8931 | - | - | - | - |
0.6898 | 248 | 2.7913 | - | - | - | - |
0.6954 | 250 | 2.6933 | - | - | - | - |
0.7010 | 252 | 2.5632 | 2.4585 | 0.7700 | 0.6065 | 0.9298 |
0.7065 | 254 | 2.8347 | - | - | - | - |
0.7121 | 256 | 2.3827 | - | - | - | - |
0.7177 | 258 | 2.9065 | - | - | - | - |
0.7232 | 260 | 2.8162 | - | - | - | - |
0.7288 | 262 | 2.5485 | - | - | - | - |
0.7344 | 264 | 2.5751 | - | - | - | - |
0.7399 | 266 | 2.9056 | - | - | - | - |
0.7455 | 268 | 3.1397 | - | - | - | - |
0.7510 | 270 | 3.3107 | - | - | - | - |
0.7566 | 272 | 2.9024 | - | - | - | - |
0.7622 | 274 | 2.2307 | - | - | - | - |
0.7677 | 276 | 3.0097 | - | - | - | - |
0.7733 | 278 | 3.1406 | - | - | - | - |
0.7789 | 280 | 2.6786 | - | - | - | - |
0.7844 | 282 | 2.8882 | - | - | - | - |
0.7900 | 284 | 2.7215 | - | - | - | - |
0.7955 | 286 | 3.4188 | - | - | - | - |
0.8011 | 288 | 2.9901 | 2.4414 | 0.7665 | 0.6023 | 0.9288 |
0.8067 | 290 | 2.5144 | - | - | - | - |
0.8122 | 292 | 3.1932 | - | - | - | - |
0.8178 | 294 | 2.9733 | - | - | - | - |
0.8234 | 296 | 2.6895 | - | - | - | - |
0.8289 | 298 | 2.678 | - | - | - | - |
0.8345 | 300 | 2.5462 | - | - | - | - |
0.8401 | 302 | 2.6911 | - | - | - | - |
0.8456 | 304 | 2.8404 | - | - | - | - |
0.8512 | 306 | 2.5358 | - | - | - | - |
0.8567 | 308 | 3.1245 | - | - | - | - |
0.8623 | 310 | 2.3404 | - | - | - | - |
0.8679 | 312 | 3.0751 | - | - | - | - |
0.8734 | 314 | 2.7005 | - | - | - | - |
0.8790 | 316 | 2.7387 | - | - | - | - |
0.8846 | 318 | 2.7227 | - | - | - | - |
0.8901 | 320 | 2.9085 | - | - | - | - |
0.8957 | 322 | 3.3239 | - | - | - | - |
0.9013 | 324 | 2.4256 | 2.4106 | 0.7644 | 0.6087 | 0.9304 |
0.9068 | 326 | 2.5059 | - | - | - | - |
0.9124 | 328 | 2.5387 | - | - | - | - |
0.9179 | 330 | 2.899 | - | - | - | - |
0.9235 | 332 | 2.7256 | - | - | - | - |
0.9291 | 334 | 2.4862 | - | - | - | - |
0.9346 | 336 | 3.0014 | - | - | - | - |
0.9402 | 338 | 2.4164 | - | - | - | - |
0.9458 | 340 | 2.3148 | - | - | - | - |
0.9513 | 342 | 2.9414 | - | - | - | - |
0.9569 | 344 | 2.4435 | - | - | - | - |
0.9624 | 346 | 2.6286 | - | - | - | - |
0.9680 | 348 | 2.1744 | - | - | - | - |
0.9736 | 350 | 2.5866 | - | - | - | - |
0.9791 | 352 | 2.8333 | - | - | - | - |
0.9847 | 354 | 2.3544 | - | - | - | - |
0.9903 | 356 | 2.5397 | - | - | - | - |
0.9958 | 358 | 3.4058 | - | - | - | - |
1.0014 | 360 | 2.2904 | 2.4089 | 0.7888 | 0.6104 | 0.9338 |
1.0070 | 362 | 2.7925 | - | - | - | - |
1.0125 | 364 | 2.6415 | - | - | - | - |
1.0181 | 366 | 2.724 | - | - | - | - |
1.0236 | 368 | 2.569 | - | - | - | - |
1.0292 | 370 | 2.808 | - | - | - | - |
1.0348 | 372 | 2.4672 | - | - | - | - |
1.0403 | 374 | 2.3964 | - | - | - | - |
1.0459 | 376 | 2.3518 | - | - | - | - |
1.0515 | 378 | 2.7617 | - | - | - | - |
1.0570 | 380 | 2.5651 | - | - | - | - |
1.0626 | 382 | 2.2623 | - | - | - | - |
1.0682 | 384 | 2.2048 | - | - | - | - |
1.0737 | 386 | 2.1426 | - | - | - | - |
1.0793 | 388 | 1.8182 | - | - | - | - |
1.0848 | 390 | 2.3166 | - | - | - | - |
1.0904 | 392 | 2.4101 | - | - | - | - |
1.0960 | 394 | 2.8932 | - | - | - | - |
1.1015 | 396 | 3.0201 | 2.4217 | 0.7851 | 0.6205 | 0.9301 |
1.1071 | 398 | 2.6101 | - | - | - | - |
1.1127 | 400 | 2.3627 | - | - | - | - |
1.1182 | 402 | 2.5402 | - | - | - | - |
1.1238 | 404 | 2.695 | - | - | - | - |
1.1293 | 406 | 3.0563 | - | - | - | - |
1.1349 | 408 | 2.2296 | - | - | - | - |
1.1405 | 410 | 3.057 | - | - | - | - |
1.1460 | 412 | 2.8023 | - | - | - | - |
1.1516 | 414 | 2.6492 | - | - | - | - |
1.1572 | 416 | 2.2406 | - | - | - | - |
1.1627 | 418 | 1.7195 | - | - | - | - |
1.1683 | 420 | 2.2773 | - | - | - | - |
1.1739 | 422 | 2.3639 | - | - | - | - |
1.1794 | 424 | 2.3348 | - | - | - | - |
1.1850 | 426 | 2.6791 | - | - | - | - |
1.1905 | 428 | 2.3621 | - | - | - | - |
1.1961 | 430 | 2.5224 | - | - | - | - |
1.2017 | 432 | 2.4063 | 2.4724 | 0.7628 | 0.6043 | 0.9270 |
1.2072 | 434 | 1.9713 | - | - | - | - |
1.2128 | 436 | 2.4265 | - | - | - | - |
1.2184 | 438 | 2.0827 | - | - | - | - |
1.2239 | 440 | 2.0696 | - | - | - | - |
1.2295 | 442 | 2.7507 | - | - | - | - |
1.2350 | 444 | 2.5436 | - | - | - | - |
1.2406 | 446 | 2.4039 | - | - | - | - |
1.2462 | 448 | 2.4229 | - | - | - | - |
1.2517 | 450 | 2.323 | - | - | - | - |
1.2573 | 452 | 2.6099 | - | - | - | - |
1.2629 | 454 | 2.0329 | - | - | - | - |
1.2684 | 456 | 1.8797 | - | - | - | - |
1.2740 | 458 | 1.4485 | - | - | - | - |
1.2796 | 460 | 1.6794 | - | - | - | - |
1.2851 | 462 | 2.0934 | - | - | - | - |
1.2907 | 464 | 1.9579 | - | - | - | - |
1.2962 | 466 | 1.9288 | - | - | - | - |
1.3018 | 468 | 1.5874 | 2.5056 | 0.7833 | 0.5948 | 0.9345 |
1.3074 | 470 | 1.8715 | - | - | - | - |
1.3129 | 472 | 1.3778 | - | - | - | - |
1.3185 | 474 | 2.2242 | - | - | - | - |
1.3241 | 476 | 2.4031 | - | - | - | - |
1.3296 | 478 | 1.924 | - | - | - | - |
1.3352 | 480 | 1.7895 | - | - | - | - |
1.3408 | 482 | 2.0349 | - | - | - | - |
1.3463 | 484 | 1.8116 | - | - | - | - |
1.3519 | 486 | 2.353 | - | - | - | - |
1.3574 | 488 | 3.4263 | - | - | - | - |
1.3630 | 490 | 4.0606 | - | - | - | - |
1.3686 | 492 | 2.7423 | - | - | - | - |
1.3741 | 494 | 2.8461 | - | - | - | - |
1.3797 | 496 | 3.0742 | - | - | - | - |
1.3853 | 498 | 2.2054 | - | - | - | - |
1.3908 | 500 | 2.6009 | - | - | - | - |
1.3964 | 502 | 2.242 | - | - | - | - |
1.4019 | 504 | 2.9416 | 2.5288 | 0.7969 | 0.6010 | 0.9323 |
1.4075 | 506 | 3.8179 | - | - | - | - |
1.4131 | 508 | 3.0147 | - | - | - | - |
1.4186 | 510 | 2.2185 | - | - | - | - |
1.4242 | 512 | 3.0323 | - | - | - | - |
1.4298 | 514 | 2.6922 | - | - | - | - |
1.4353 | 516 | 2.6219 | - | - | - | - |
1.4409 | 518 | 2.4365 | - | - | - | - |
1.4465 | 520 | 3.1643 | - | - | - | - |
1.4520 | 522 | 2.5548 | - | - | - | - |
1.4576 | 524 | 2.3798 | - | - | - | - |
1.4631 | 526 | 2.6361 | - | - | - | - |
1.4687 | 528 | 2.6859 | - | - | - | - |
1.4743 | 530 | 2.6071 | - | - | - | - |
1.4798 | 532 | 2.2565 | - | - | - | - |
1.4854 | 534 | 2.2415 | - | - | - | - |
1.4910 | 536 | 2.4591 | - | - | - | - |
1.4965 | 538 | 2.6729 | - | - | - | - |
1.5021 | 540 | 2.3898 | 2.5025 | 0.7881 | 0.5978 | 0.9300 |
1.5076 | 542 | 2.4614 | - | - | - | - |
1.5132 | 544 | 2.5447 | - | - | - | - |
1.5188 | 546 | 2.502 | - | - | - | - |
1.5243 | 548 | 2.1892 | - | - | - | - |
1.5299 | 550 | 2.7081 | - | - | - | - |
1.5355 | 552 | 2.5523 | - | - | - | - |
1.5410 | 554 | 2.3571 | - | - | - | - |
1.5466 | 556 | 2.7694 | - | - | - | - |
1.5522 | 558 | 2.2 | - | - | - | - |
1.5577 | 560 | 2.4179 | - | - | - | - |
1.5633 | 562 | 2.3914 | - | - | - | - |
1.5688 | 564 | 2.1722 | - | - | - | - |
1.5744 | 566 | 2.345 | - | - | - | - |
1.5800 | 568 | 3.0069 | - | - | - | - |
1.5855 | 570 | 2.4231 | - | - | - | - |
1.5911 | 572 | 2.3597 | - | - | - | - |
1.5967 | 574 | 2.143 | - | - | - | - |
1.6022 | 576 | 2.6288 | 2.5368 | 0.7943 | 0.6048 | 0.9265 |
1.6078 | 578 | 2.3905 | - | - | - | - |
1.6134 | 580 | 2.1823 | - | - | - | - |
1.6189 | 582 | 2.367 | - | - | - | - |
1.6245 | 584 | 2.8189 | - | - | - | - |
1.6300 | 586 | 2.6536 | - | - | - | - |
1.6356 | 588 | 2.2134 | - | - | - | - |
1.6412 | 590 | 1.6949 | - | - | - | - |
1.6467 | 592 | 2.2029 | - | - | - | - |
1.6523 | 594 | 3.0223 | - | - | - | - |
1.6579 | 596 | 2.239 | - | - | - | - |
1.6634 | 598 | 2.3388 | - | - | - | - |
1.6690 | 600 | 2.3066 | - | - | - | - |
1.6745 | 602 | 2.4762 | - | - | - | - |
1.6801 | 604 | 1.9503 | - | - | - | - |
1.6857 | 606 | 2.1252 | - | - | - | - |
1.6912 | 608 | 1.8253 | - | - | - | - |
1.6968 | 610 | 2.2938 | - | - | - | - |
1.7024 | 612 | 1.9489 | 2.5747 | 0.7675 | 0.5964 | 0.9267 |
1.7079 | 614 | 1.9238 | - | - | - | - |
1.7135 | 616 | 1.8171 | - | - | - | - |
1.7191 | 618 | 2.2371 | - | - | - | - |
1.7246 | 620 | 2.4901 | - | - | - | - |
1.7302 | 622 | 1.8503 | - | - | - | - |
1.7357 | 624 | 2.017 | - | - | - | - |
1.7413 | 626 | 2.3069 | - | - | - | - |
1.7469 | 628 | 2.444 | - | - | - | - |
1.7524 | 630 | 1.9606 | - | - | - | - |
1.7580 | 632 | 2.2364 | - | - | - | - |
1.7636 | 634 | 1.8711 | - | - | - | - |
1.7691 | 636 | 2.4233 | - | - | - | - |
1.7747 | 638 | 2.4065 | - | - | - | - |
1.7803 | 640 | 2.0725 | - | - | - | - |
1.7858 | 642 | 2.0578 | - | - | - | - |
1.7914 | 644 | 2.2066 | - | - | - | - |
1.7969 | 646 | 1.7767 | - | - | - | - |
1.8025 | 648 | 2.7388 | 2.5685 | 0.7663 | 0.5959 | 0.9292 |
1.8081 | 650 | 1.854 | - | - | - | - |
1.8136 | 652 | 2.7337 | - | - | - | - |
1.8192 | 654 | 2.4477 | - | - | - | - |
1.8248 | 656 | 2.4818 | - | - | - | - |
1.8303 | 658 | 1.8592 | - | - | - | - |
1.8359 | 660 | 1.8396 | - | - | - | - |
1.8414 | 662 | 2.3893 | - | - | - | - |
1.8470 | 664 | 2.0139 | - | - | - | - |
1.8526 | 666 | 2.8837 | - | - | - | - |
1.8581 | 668 | 2.0342 | - | - | - | - |
1.8637 | 670 | 1.8857 | - | - | - | - |
1.8693 | 672 | 2.1147 | - | - | - | - |
1.8748 | 674 | 1.6263 | - | - | - | - |
1.8804 | 676 | 2.2987 | - | - | - | - |
1.8860 | 678 | 1.9678 | - | - | - | - |
1.8915 | 680 | 1.9999 | - | - | - | - |
1.8971 | 682 | 2.2802 | - | - | - | - |
1.9026 | 684 | 1.9666 | 2.5536 | 0.7717 | 0.5967 | 0.9289 |
1.9082 | 686 | 1.8156 | - | - | - | - |
1.9138 | 688 | 1.9542 | - | - | - | - |
1.9193 | 690 | 1.859 | - | - | - | - |
1.9249 | 692 | 1.6237 | - | - | - | - |
1.9305 | 694 | 2.3085 | - | - | - | - |
1.9360 | 696 | 2.1461 | - | - | - | - |
1.9416 | 698 | 1.7024 | - | - | - | - |
1.9471 | 700 | 2.2181 | - | - | - | - |
1.9527 | 702 | 2.4782 | - | - | - | - |
1.9583 | 704 | 1.7378 | - | - | - | - |
1.9638 | 706 | 2.0422 | - | - | - | - |
1.9694 | 708 | 1.7577 | - | - | - | - |
1.9750 | 710 | 2.0209 | - | - | - | - |
1.9805 | 712 | 2.0372 | - | - | - | - |
1.9861 | 714 | 2.0915 | - | - | - | - |
1.9917 | 716 | 1.603 | - | - | - | - |
1.9972 | 718 | 1.7111 | 2.5566 | 0.7705 | 0.5966 | 0.9293 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
AnglELoss
@misc{li2023angleoptimized,
title={AnglE-optimized Text Embeddings},
author={Xianming Li and Jing Li},
year={2023},
eprint={2309.12871},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for bobox/DeBERTa2-0.9B-ST-stsb
Base model
microsoft/deberta-v2-xlargeDataset used to train bobox/DeBERTa2-0.9B-ST-stsb
Evaluation results
- Pearson Cosine on sts testself-reported0.917
- Spearman Cosine on sts testself-reported0.929
- Pearson Manhattan on sts testself-reported0.928
- Spearman Manhattan on sts testself-reported0.930
- Pearson Euclidean on sts testself-reported0.929
- Spearman Euclidean on sts testself-reported0.930
- Pearson Dot on sts testself-reported0.902
- Spearman Dot on sts testself-reported0.906
- Pearson Max on sts testself-reported0.929
- Spearman Max on sts testself-reported0.930