SentenceTransformer based on microsoft/deberta-v3-small
This is a sentence-transformers model finetuned from microsoft/deberta-v3-small. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/deberta-v3-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): AdvancedWeightedPooling(
(linear_cls): Linear(in_features=768, out_features=768, bias=True)
(linear_mean): Linear(in_features=768, out_features=768, bias=True)
(mha): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(layernorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(layernorm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(layernorm_cls): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(layernorm_mean): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
)
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa3-s-CustomPoolin-v3-step1")
# Run inference
sentences = [
'What was the name of eleven rulers of the 19th and 20th Egyptian dynasties?',
'List of Rulers of Ancient Egypt and Nubia | Lists of Rulers | Heilbrunn Timeline of Art History | The Metropolitan Museum of Art The Metropolitan Museum of Art List of Rulers of Ancient Egypt and Nubia See works of art 30.8.234 52.127.4 Our knowledge of the succession of Egyptian kings is based on kinglists kept by the ancient Egyptians themselves. The most famous are the Palermo Stone, which covers the period from the earliest dynasties to the middle of Dynasty 5; the Abydos Kinglist, which Seti I had carved on his temple at Abydos; and the Turin Canon, a papyrus that covers the period from the earliest dynasties to the reign of Ramesses II. All are incomplete or fragmentary. We also rely on the History of Egypt written by Manetho in the third century B.C. A priest in the temple at Heliopolis, Manetho had access to many original sources and it was he who divided the kings into the thirty dynasties we use today. It is to this structure of dynasties and listed kings that we now attempt to link an absolute chronology of dates in terms of our own calendrical system. The process is made difficult by the fragmentary condition of the kinglists and by differences in the calendrical years used at various times. Some astronomical observations from the ancient Egyptians have survived, allowing us to calculate absolute dates within a margin of error. Synchronisms with the other civilizations of the ancient world are also of limited use.',
'What is the "Jack Sprat" nursery rhyme? | Reference.com What is the "Jack Sprat" nursery rhyme? A: Quick Answer "Jack Sprat" is a traditional English nursery rhyme whose main verse says, "Jack Sprat could eat no fat. His wife could eat no lean. And so between them both, you see, they licked the platter clean." Though it was likely sung by children long before, "Jack Sprat" was first published around 1765 in the compilation "Mother Goose\'s Melody." Full Answer According to Rhymes.org, a U.K. website devoted to nursery rhyme lyrics and origins, the "Jack Sprat" nursery rhyme has its origins in British history. In one interpretation, Jack Sprat was King Charles I, who ruled England in the early part of the 17th century, and his wife was Queen Henrietta Maria. Parliament refused to finance the king\'s war with Spain, which made him lean. However, the queen fattened the coffers by levying an illegal war tax. In an alternative version, the "Jack Sprat" nursery rhyme is linked to King Richard and his brother John of the Robin Hood legend. Jack Sprat was King John, the usurper who tried to take over the crown when King Richard went off to fight in the Crusades in the 12th century. When King Richard was captured, John had to raise a ransom to rescue him, leaving the country lean. The wife was Joan, daughter of the Earl of Gloucester, the greedy wife of King John. However, after King Richard died and John became king, he had his marriage with Joan annulled.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7674 |
spearman_cosine | 0.7776 |
pearson_manhattan | 0.7824 |
spearman_manhattan | 0.7721 |
pearson_euclidean | 0.7883 |
spearman_euclidean | 0.7775 |
pearson_dot | 0.7669 |
spearman_dot | 0.7763 |
pearson_max | 0.7883 |
spearman_max | 0.7776 |
Binary Classification
- Dataset:
allNLI-dev
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.709 |
cosine_accuracy_threshold | 0.8715 |
cosine_f1 | 0.5913 |
cosine_f1_threshold | 0.7769 |
cosine_precision | 0.4739 |
cosine_recall | 0.7861 |
cosine_ap | 0.5644 |
dot_accuracy | 0.7109 |
dot_accuracy_threshold | 674.426 |
dot_f1 | 0.5913 |
dot_f1_threshold | 603.4353 |
dot_precision | 0.4739 |
dot_recall | 0.7861 |
dot_ap | 0.5665 |
manhattan_accuracy | 0.7109 |
manhattan_accuracy_threshold | 294.4728 |
manhattan_f1 | 0.5935 |
manhattan_f1_threshold | 401.1483 |
manhattan_precision | 0.4726 |
manhattan_recall | 0.7977 |
manhattan_ap | 0.5643 |
euclidean_accuracy | 0.7109 |
euclidean_accuracy_threshold | 14.5655 |
euclidean_f1 | 0.5913 |
euclidean_f1_threshold | 18.6041 |
euclidean_precision | 0.4739 |
euclidean_recall | 0.7861 |
euclidean_ap | 0.5646 |
max_accuracy | 0.7109 |
max_accuracy_threshold | 674.426 |
max_f1 | 0.5935 |
max_f1_threshold | 603.4353 |
max_precision | 0.4739 |
max_recall | 0.7977 |
max_ap | 0.5665 |
Binary Classification
- Dataset:
Qnli-dev
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.6797 |
cosine_accuracy_threshold | 0.7727 |
cosine_f1 | 0.6926 |
cosine_f1_threshold | 0.7318 |
cosine_precision | 0.5758 |
cosine_recall | 0.8686 |
cosine_ap | 0.7303 |
dot_accuracy | 0.6758 |
dot_accuracy_threshold | 598.042 |
dot_f1 | 0.6913 |
dot_f1_threshold | 565.4718 |
dot_precision | 0.5722 |
dot_recall | 0.8729 |
dot_ap | 0.73 |
manhattan_accuracy | 0.6797 |
manhattan_accuracy_threshold | 404.8309 |
manhattan_f1 | 0.6933 |
manhattan_f1_threshold | 444.9922 |
manhattan_precision | 0.5714 |
manhattan_recall | 0.8814 |
manhattan_ap | 0.7369 |
euclidean_accuracy | 0.6797 |
euclidean_accuracy_threshold | 18.7907 |
euclidean_f1 | 0.6934 |
euclidean_f1_threshold | 19.3513 |
euclidean_precision | 0.609 |
euclidean_recall | 0.8051 |
euclidean_ap | 0.7307 |
max_accuracy | 0.6797 |
max_accuracy_threshold | 598.042 |
max_f1 | 0.6934 |
max_f1_threshold | 565.4718 |
max_precision | 0.609 |
max_recall | 0.8814 |
max_ap | 0.7369 |
Training Details
Evaluation Dataset
vitaminc-pairs
- Dataset: vitaminc-pairs at be6febb
- Size: 128 evaluation samples
- Columns:
claim
andevidence
- Approximate statistics based on the first 128 samples:
claim evidence type string string details - min: 9 tokens
- mean: 21.42 tokens
- max: 41 tokens
- min: 11 tokens
- mean: 35.55 tokens
- max: 79 tokens
- Samples:
claim evidence Dragon Con had over 5000 guests .
Among the more than 6000 guests and musical performers at the 2009 convention were such notables as Patrick Stewart , William Shatner , Leonard Nimoy , Terry Gilliam , Bruce Boxleitner , James Marsters , and Mary McDonnell .
COVID-19 has reached more than 185 countries .
As of , more than cases of COVID-19 have been reported in more than 190 countries and 200 territories , resulting in more than deaths .
In March , Italy had 3.6x times more cases of coronavirus than China .
As of 12 March , among nations with at least one million citizens , Italy has the world 's highest per capita rate of positive coronavirus cases at 206.1 cases per million people ( 3.6x times the rate of China ) and is the country with the second-highest number of positive cases as well as of deaths in the world , after China .
- Loss:
CachedGISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.025}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 100per_device_eval_batch_size
: 256gradient_accumulation_steps
: 2lr_scheduler_type
: cosine_with_min_lrlr_scheduler_kwargs
: {'num_cycles': 0.5, 'min_lr': 1.6666666666666667e-05}warmup_ratio
: 0.33save_safetensors
: Falsefp16
: Truepush_to_hub
: Truehub_model_id
: bobox/DeBERTa3-s-CustomPoolin-v3-step1-checkpoints-tmphub_strategy
: all_checkpointsbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 100per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: cosine_with_min_lrlr_scheduler_kwargs
: {'num_cycles': 0.5, 'min_lr': 1.6666666666666667e-05}warmup_ratio
: 0.33warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Falsesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: bobox/DeBERTa3-s-CustomPoolin-v3-step1-checkpoints-tmphub_strategy
: all_checkpointshub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | vitaminc-pairs loss | negation-triplets loss | scitail-pairs-pos loss | scitail-pairs-qa loss | xsum-pairs loss | sciq pairs loss | qasc pairs loss | openbookqa pairs loss | msmarco pairs loss | nq pairs loss | trivia pairs loss | gooaq pairs loss | paws-pos loss | global dataset loss | sts-test_spearman_cosine | allNLI-dev_max_ap | Qnli-dev_max_ap |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0168 | 8 | 10.2928 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0336 | 16 | 9.2166 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0504 | 24 | 9.4858 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0672 | 32 | 10.6143 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0840 | 40 | 8.7553 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1008 | 48 | 10.9939 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1176 | 56 | 7.6039 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1345 | 64 | 5.9498 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1513 | 72 | 7.3051 | 3.2988 | 3.9604 | 1.9818 | 2.1997 | 6.0515 | 0.6095 | 6.3199 | 4.8391 | 6.4886 | 6.6406 | 6.4894 | 6.1527 | 2.0082 | 4.9577 | 0.3066 | 0.3444 | 0.5627 |
0.1681 | 80 | 8.3034 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1849 | 88 | 7.6669 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2017 | 96 | 6.6415 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2185 | 104 | 5.7797 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2353 | 112 | 5.8361 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2521 | 120 | 5.3339 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2689 | 128 | 5.5908 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2857 | 136 | 5.3209 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3025 | 144 | 5.5359 | 3.3310 | 3.8580 | 1.4769 | 1.6994 | 5.4819 | 0.5385 | 5.2021 | 4.4410 | 5.3419 | 5.5506 | 5.6972 | 5.3376 | 1.4170 | 3.9169 | 0.2954 | 0.3795 | 0.6317 |
0.3193 | 152 | 5.4713 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3361 | 160 | 4.9368 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3529 | 168 | 4.6594 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3697 | 176 | 4.8392 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3866 | 184 | 4.414 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4034 | 192 | 4.891 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4202 | 200 | 4.4553 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4370 | 208 | 3.9729 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4538 | 216 | 3.7705 | 3.2468 | 3.6435 | 0.7890 | 0.7356 | 3.9327 | 0.4082 | 3.7175 | 3.5404 | 3.5351 | 4.0506 | 3.9953 | 3.6074 | 0.4195 | 2.4726 | 0.3791 | 0.4133 | 0.6779 |
0.4706 | 224 | 3.8409 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4874 | 232 | 3.7894 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5042 | 240 | 3.3523 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5210 | 248 | 3.2407 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5378 | 256 | 3.3203 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5546 | 264 | 2.8457 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5714 | 272 | 2.4181 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5882 | 280 | 3.4589 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6050 | 288 | 2.8203 | 3.1119 | 3.1485 | 0.4531 | 0.2652 | 2.6895 | 0.2656 | 2.5542 | 2.7523 | 2.6600 | 3.1773 | 3.2099 | 2.7316 | 0.2006 | 1.6342 | 0.5257 | 0.4717 | 0.7078 |
0.6218 | 296 | 2.4697 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6387 | 304 | 2.4654 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6555 | 312 | 2.4236 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6723 | 320 | 2.2879 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6891 | 328 | 2.2145 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7059 | 336 | 1.8464 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7227 | 344 | 2.0086 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7395 | 352 | 2.0635 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7563 | 360 | 1.8584 | 3.3202 | 2.5793 | 0.3434 | 0.1618 | 1.6759 | 0.1834 | 1.6454 | 2.1257 | 2.1938 | 2.5316 | 2.4558 | 2.0596 | 0.0984 | 1.2206 | 0.6610 | 0.5199 | 0.7119 |
0.7731 | 368 | 2.0286 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7899 | 376 | 1.9389 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8067 | 384 | 1.7453 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8235 | 392 | 1.6629 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8403 | 400 | 1.2724 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8571 | 408 | 1.7824 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8739 | 416 | 1.5826 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8908 | 424 | 1.1971 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9076 | 432 | 1.5228 | 3.3624 | 2.1952 | 0.3006 | 0.1223 | 1.1091 | 0.1582 | 1.2383 | 1.8664 | 1.7434 | 2.3959 | 2.0697 | 1.7563 | 0.0766 | 1.0193 | 0.7292 | 0.5194 | 0.7126 |
0.9244 | 440 | 1.3323 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9412 | 448 | 1.5124 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9580 | 456 | 1.5565 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9748 | 464 | 1.3672 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9916 | 472 | 1.0382 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0084 | 480 | 1.0626 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0252 | 488 | 1.3539 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0420 | 496 | 1.1723 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0588 | 504 | 1.4235 | 3.4031 | 1.9759 | 0.2554 | 0.0814 | 0.9034 | 0.1378 | 1.1603 | 1.7589 | 1.5608 | 2.1230 | 1.7719 | 1.6633 | 0.0720 | 0.9380 | 0.7523 | 0.5297 | 0.7129 |
1.0756 | 512 | 1.2283 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0924 | 520 | 1.2455 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1092 | 528 | 1.4265 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1261 | 536 | 1.296 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1429 | 544 | 0.8763 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1597 | 552 | 1.5678 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1765 | 560 | 1.2548 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1933 | 568 | 1.3731 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2101 | 576 | 1.3023 | 3.3815 | 1.8740 | 0.2373 | 0.0769 | 0.7711 | 0.1237 | 0.9432 | 1.6871 | 1.5070 | 1.9947 | 1.6041 | 1.5579 | 0.0721 | 0.8661 | 0.7642 | 0.5412 | 0.7159 |
1.2269 | 584 | 0.8135 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2437 | 592 | 1.0259 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2605 | 600 | 1.1896 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2773 | 608 | 1.0532 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2941 | 616 | 1.3221 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3109 | 624 | 1.3136 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3277 | 632 | 1.2238 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3445 | 640 | 1.2407 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3613 | 648 | 1.2245 | 3.4717 | 1.7962 | 0.2242 | 0.0488 | 0.7472 | 0.1108 | 0.9272 | 1.6692 | 1.3845 | 1.9117 | 1.3410 | 1.4387 | 0.0701 | 0.8505 | 0.7680 | 0.5471 | 0.7227 |
1.3782 | 656 | 1.0428 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3950 | 664 | 1.1391 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4118 | 672 | 1.2632 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4286 | 680 | 0.9403 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4454 | 688 | 0.7571 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4622 | 696 | 0.9436 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4790 | 704 | 1.1239 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4958 | 712 | 0.9499 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5126 | 720 | 1.0945 | 3.6495 | 1.6693 | 0.2157 | 0.0492 | 0.6830 | 0.1049 | 0.9140 | 1.5967 | 1.4397 | 1.7394 | 1.3303 | 1.4334 | 0.0603 | 0.8185 | 0.7815 | 0.5606 | 0.7098 |
1.5294 | 728 | 1.1161 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5462 | 736 | 1.0056 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5630 | 744 | 1.1743 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5798 | 752 | 0.9153 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5966 | 760 | 1.1589 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6134 | 768 | 0.9187 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6303 | 776 | 0.6937 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6471 | 784 | 0.9704 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6639 | 792 | 0.7343 | 3.5442 | 1.6493 | 0.2208 | 0.0249 | 0.6152 | 0.0969 | 0.7111 | 1.5369 | 1.4058 | 1.7066 | 1.2784 | 1.3419 | 0.0585 | 0.7827 | 0.7749 | 0.5627 | 0.7284 |
1.6807 | 800 | 1.2878 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6975 | 808 | 0.9898 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7143 | 816 | 0.7613 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7311 | 824 | 0.9612 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7479 | 832 | 1.1524 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7647 | 840 | 0.827 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7815 | 848 | 1.1898 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7983 | 856 | 1.0117 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8151 | 864 | 0.7019 | 3.4544 | 1.6149 | 0.2035 | 0.0181 | 0.5525 | 0.0999 | 0.6641 | 1.5456 | 1.3911 | 1.7188 | 1.2547 | 1.3517 | 0.0562 | 0.7473 | 0.7684 | 0.5697 | 0.7329 |
1.8319 | 872 | 0.8352 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8487 | 880 | 0.7836 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8655 | 888 | 1.0187 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8824 | 896 | 0.74 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8992 | 904 | 0.7263 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9160 | 912 | 0.8073 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9328 | 920 | 0.8185 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9496 | 928 | 1.0992 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9664 | 936 | 0.9973 | 3.5110 | 1.5776 | 0.2035 | 0.0250 | 0.5881 | 0.0934 | 0.6719 | 1.5059 | 1.2970 | 1.6186 | 1.1815 | 1.2714 | 0.0564 | 0.7213 | 0.7799 | 0.5544 | 0.7341 |
1.9832 | 944 | 0.6662 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.0 | 952 | 0.533 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.0168 | 960 | 0.7712 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.0336 | 968 | 0.6879 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.0504 | 976 | 0.7975 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.0672 | 984 | 0.873 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.0840 | 992 | 0.7995 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.1008 | 1000 | 1.0119 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.1176 | 1008 | 0.6317 | 3.6778 | 1.5845 | 0.2102 | 0.0228 | 0.5851 | 0.0977 | 0.6411 | 1.4752 | 1.2992 | 1.6314 | 1.1260 | 1.2683 | 0.0556 | 0.7329 | 0.7693 | 0.5614 | 0.7274 |
2.1345 | 1016 | 0.72 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.1513 | 1024 | 0.9418 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.1681 | 1032 | 0.7848 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.1849 | 1040 | 0.6965 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.2017 | 1048 | 1.0447 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.2185 | 1056 | 0.6361 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.2353 | 1064 | 0.6837 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.2521 | 1072 | 0.5713 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.2689 | 1080 | 0.8193 | 3.6399 | 1.5565 | 0.2069 | 0.0213 | 0.5440 | 0.0904 | 0.6057 | 1.4815 | 1.2856 | 1.6441 | 1.1469 | 1.2540 | 0.0543 | 0.7216 | 0.7765 | 0.5599 | 0.7322 |
2.2857 | 1088 | 0.9754 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.3025 | 1096 | 0.8932 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.3193 | 1104 | 0.8716 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.3361 | 1112 | 0.8787 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.3529 | 1120 | 0.9529 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.3697 | 1128 | 0.775 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.3866 | 1136 | 0.6178 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.4034 | 1144 | 0.8384 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.4202 | 1152 | 0.9425 | 3.5672 | 1.5244 | 0.2111 | 0.0162 | 0.5593 | 0.0893 | 0.5759 | 1.4933 | 1.2703 | 1.5815 | 1.1202 | 1.2132 | 0.0531 | 0.7058 | 0.7730 | 0.5635 | 0.7350 |
2.4370 | 1160 | 0.4551 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.4538 | 1168 | 0.6392 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.4706 | 1176 | 0.8341 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.4874 | 1184 | 0.7392 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.5042 | 1192 | 0.7646 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.5210 | 1200 | 0.8613 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.5378 | 1208 | 0.7585 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.5546 | 1216 | 1.0611 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.5714 | 1224 | 0.6506 | 3.6439 | 1.5040 | 0.2125 | 0.0162 | 0.5282 | 0.0863 | 0.5858 | 1.5073 | 1.2444 | 1.5493 | 1.1014 | 1.2073 | 0.0532 | 0.7022 | 0.7774 | 0.5647 | 0.7328 |
2.5882 | 1232 | 0.8525 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.6050 | 1240 | 0.6304 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.6218 | 1248 | 0.6354 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.6387 | 1256 | 0.6583 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.6555 | 1264 | 0.5964 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.6723 | 1272 | 0.818 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.6891 | 1280 | 0.8635 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.7059 | 1288 | 0.6389 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.7227 | 1296 | 0.6819 | 3.6131 | 1.5104 | 0.2084 | 0.0148 | 0.5229 | 0.0854 | 0.5588 | 1.4963 | 1.2766 | 1.5679 | 1.0982 | 1.2203 | 0.0529 | 0.7059 | 0.7762 | 0.5659 | 0.7355 |
2.7395 | 1304 | 0.7878 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.7563 | 1312 | 0.7638 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.7731 | 1320 | 0.8885 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.7899 | 1328 | 0.8184 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.8067 | 1336 | 0.7472 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.8235 | 1344 | 0.7012 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.8403 | 1352 | 0.4622 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.8571 | 1360 | 0.846 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.8739 | 1368 | 0.8308 | 3.6224 | 1.5088 | 0.2084 | 0.0148 | 0.5118 | 0.0858 | 0.5523 | 1.4941 | 1.2756 | 1.5808 | 1.0925 | 1.2114 | 0.0521 | 0.7022 | 0.7765 | 0.5662 | 0.7366 |
2.8908 | 1376 | 0.5334 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.9076 | 1384 | 0.7893 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.9244 | 1392 | 0.6897 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.9412 | 1400 | 0.7803 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.9580 | 1408 | 0.841 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.9748 | 1416 | 0.787 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.9916 | 1424 | 0.5861 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
3.0 | 1428 | - | 3.6139 | 1.5071 | 0.2084 | 0.0150 | 0.5124 | 0.0862 | 0.5532 | 1.4924 | 1.2700 | 1.5806 | 1.0905 | 1.2081 | 0.0519 | 0.6997 | 0.7776 | 0.5665 | 0.7369 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for bobox/DeBERTa3-s-CustomPoolin-v3-step1
Base model
microsoft/deberta-v3-smallDataset used to train bobox/DeBERTa3-s-CustomPoolin-v3-step1
Evaluation results
- Pearson Cosine on sts testself-reported0.767
- Spearman Cosine on sts testself-reported0.778
- Pearson Manhattan on sts testself-reported0.782
- Spearman Manhattan on sts testself-reported0.772
- Pearson Euclidean on sts testself-reported0.788
- Spearman Euclidean on sts testself-reported0.778
- Pearson Dot on sts testself-reported0.767
- Spearman Dot on sts testself-reported0.776
- Pearson Max on sts testself-reported0.788
- Spearman Max on sts testself-reported0.778