license: openrail
language:
- fr
pipeline_tag: text-generation
library_name: transformers
tags:
- alpaca
- llama
- LLM
datasets:
- tatsu-lab/alpaca
inference: false
Vigogne-LoRA-7b: A French Instruct LLaMA Model
Vigogne-LoRA-7b is a LLaMA-7B model fine-tuned on the translated Stanford Alpaca dataset to follow the French 🇫🇷 instructions.
For more information, please visit the Github repo: https://github.com/bofenghuang/vigogne
Usage and License Notices: Same as Stanford Alpaca, Vigogne is intended and licensed for research use only. The dataset is CC BY NC 4.0 (allowing only non-commercial use) and models trained using the dataset should not be used outside of research purposes.
Usage
This repo contains only its low-rank adapter. In order to use it, you also need to load the base LLM model and tokenizer.
from peft import PeftModel
from transformers import LlamaForCausalLM, LlamaTokenizer
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
model = LlamaForCausalLM.from_pretrained(
"decapoda-research/llama-7b-hf",
load_in_8bit=True,
device_map="auto",
)
model = PeftModel.from_pretrained(model, "bofenghuang/vigogne-lora-7b")
You can infer with this model using the following Google Colab Notebook.
Limitations
Vigogne is still under development, and there are many limitations that have to be addressed. Please note that it is possible that the model generates harmful or biased content, incorrect information or generally unhelpful answers.
Next Steps
- Add output examples