|
#include "ggml/ggml.h" |
|
|
|
#include "common-ggml.h" |
|
#include "common.h" |
|
|
|
#include <cassert> |
|
#include <cinttypes> |
|
#include <cmath> |
|
#include <cstdio> |
|
#include <cstring> |
|
#include <fstream> |
|
#include <iostream> |
|
#include <map> |
|
#include <stdint.h> |
|
#include <string> |
|
#include <vector> |
|
|
|
struct btlm_vocab { |
|
using id = int32_t; |
|
using token = std::string; |
|
|
|
std::map<token, id> token_to_id; |
|
std::map<id, token> id_to_token; |
|
std::vector<std::string> special_tokens; |
|
}; |
|
|
|
struct btlm_params { |
|
int32_t seed = -1; |
|
int32_t n_threads = std::min(4, (int32_t)std::thread::hardware_concurrency()); |
|
int32_t n_predict = 200; |
|
int32_t n_batch = 8; |
|
|
|
|
|
int32_t top_k = 40; |
|
float top_p = 0.9f; |
|
float temp = 0.9f; |
|
int32_t repeat_last_n = 64; |
|
float repeat_penalty = 1.00f; |
|
|
|
std::string model = |
|
"/home/madman/Desktop/ml_play/ml_models/btlm-3b.ggml.bin"; |
|
std::string prompt = "Capital of Nepal is"; |
|
std::string token_test = ""; |
|
}; |
|
|
|
struct btlm_hparams { |
|
int32_t n_vocab; |
|
int32_t n_ctx; |
|
int32_t n_embd; |
|
int32_t n_head; |
|
int32_t n_layer; |
|
int32_t n_inner; |
|
int32_t ftype; |
|
}; |
|
|
|
struct btlm_layer { |
|
|
|
struct ggml_tensor *ln_1_g; |
|
struct ggml_tensor *ln_1_b; |
|
|
|
struct ggml_tensor *ln_2_g; |
|
struct ggml_tensor *ln_2_b; |
|
|
|
|
|
struct ggml_tensor *c_attn_attn_w; |
|
struct ggml_tensor *c_attn_attn_b; |
|
struct ggml_tensor *c_attn_attn_scb; |
|
|
|
struct ggml_tensor *c_attn_proj_w; |
|
struct ggml_tensor *c_attn_proj_b; |
|
struct ggml_tensor *c_attn_proj_scb; |
|
|
|
|
|
struct ggml_tensor *c_mlp_fc_w; |
|
struct ggml_tensor *c_mlp_fc_b; |
|
struct ggml_tensor *c_mlp_fc_scb; |
|
|
|
struct ggml_tensor *c_mlp_fc2_w; |
|
struct ggml_tensor *c_mlp_fc2_b; |
|
struct ggml_tensor *c_mlp_fc2_scb; |
|
|
|
struct ggml_tensor *c_mlp_proj_w; |
|
struct ggml_tensor *c_mlp_proj_b; |
|
struct ggml_tensor *c_mlp_proj_scb; |
|
}; |
|
|
|
struct btlm_model { |
|
btlm_hparams hparams; |
|
|
|
|
|
struct ggml_tensor *ln_f_g; |
|
struct ggml_tensor *ln_f_b; |
|
|
|
struct ggml_tensor *wte; |
|
struct ggml_tensor *alibi_slopes; |
|
struct ggml_tensor *lm_head; |
|
|
|
std::vector<btlm_layer> layers; |
|
|
|
|
|
struct ggml_tensor *memory_k; |
|
struct ggml_tensor *memory_v; |
|
|
|
|
|
struct ggml_context *ctx; |
|
std::map<std::string, struct ggml_tensor *> tensors; |
|
}; |
|
|
|
|
|
bool btlm_model_load(const std::string &fname, btlm_model &model, |
|
btlm_vocab &vocab) { |
|
printf("%s: loading model from '%s'\n", __func__, fname.c_str()); |
|
|
|
auto fin = std::ifstream(fname, std::ios::binary); |
|
if (!fin) { |
|
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); |
|
return false; |
|
} |
|
|
|
|
|
{ |
|
uint32_t magic; |
|
fin.read((char *)&magic, sizeof(magic)); |
|
if (magic != GGML_FILE_MAGIC) { |
|
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, |
|
fname.c_str()); |
|
return false; |
|
} |
|
} |
|
|
|
|
|
{ |
|
auto &hparams = model.hparams; |
|
|
|
fin.read((char *)&hparams.n_vocab, sizeof(hparams.n_vocab)); |
|
fin.read((char *)&hparams.n_ctx, sizeof(hparams.n_ctx)); |
|
fin.read((char *)&hparams.n_embd, sizeof(hparams.n_embd)); |
|
fin.read((char *)&hparams.n_head, sizeof(hparams.n_head)); |
|
fin.read((char *)&hparams.n_layer, sizeof(hparams.n_layer)); |
|
fin.read((char *)&hparams.n_inner, sizeof(hparams.n_inner)); |
|
fin.read((char *)&hparams.ftype, sizeof(hparams.ftype)); |
|
|
|
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR; |
|
|
|
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); |
|
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); |
|
printf("%s: n_embd = %d\n", __func__, hparams.n_embd); |
|
printf("%s: n_head = %d\n", __func__, hparams.n_head); |
|
printf("%s: n_layer = %d\n", __func__, hparams.n_layer); |
|
printf("%s: n_inner = %d\n", __func__, hparams.n_inner); |
|
printf("%s: ftype = %d\n", __func__, hparams.ftype); |
|
printf("%s: qntvr = %d\n", __func__, qntvr); |
|
|
|
hparams.ftype %= GGML_QNT_VERSION_FACTOR; |
|
} |
|
|
|
|
|
|
|
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype)(model.hparams.ftype)); |
|
if (wtype == GGML_TYPE_COUNT) { |
|
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", |
|
__func__, fname.c_str(), model.hparams.ftype); |
|
return false; |
|
} |
|
|
|
auto &ctx = model.ctx; |
|
size_t ctx_size = 0; |
|
|
|
{ |
|
|
|
ctx_size = 1024 * 1024 * 8000u; |
|
|
|
printf("%s: ggml tensor size = %d bytes\n", __func__, |
|
(int)sizeof(ggml_tensor)); |
|
printf("%s: ggml ctx size = %6.2f MB\n", __func__, |
|
ctx_size / (1024.0 * 1024.0)); |
|
printf("%s: ggml ctx size = %d \n", __func__, ctx_size); |
|
} |
|
|
|
|
|
{ |
|
struct ggml_init_params params = { |
|
ctx_size, |
|
NULL, |
|
false, |
|
}; |
|
|
|
model.ctx = ggml_init(params); |
|
if (!model.ctx) { |
|
fprintf(stderr, "%s: ggml_init() failed\n", __func__); |
|
return false; |
|
} |
|
} |
|
|
|
|
|
{ |
|
int32_t n_vocab = model.hparams.n_vocab; |
|
|
|
std::string word; |
|
std::vector<char> buf(128); |
|
|
|
for (int i = 0; i < n_vocab; i++) { |
|
uint32_t len; |
|
fin.read((char *)&len, sizeof(len)); |
|
|
|
buf.resize(len); |
|
fin.read((char *)buf.data(), len); |
|
word.assign(buf.data(), len); |
|
|
|
|
|
|
|
vocab.token_to_id[word] = i; |
|
vocab.id_to_token[i] = word; |
|
} |
|
} |
|
|
|
{ |
|
|
|
|
|
|
|
const auto &hparams = model.hparams; |
|
|
|
const int n_embd = hparams.n_embd; |
|
const int n_layer = hparams.n_layer; |
|
|
|
const int n_vocab = hparams.n_vocab; |
|
|
|
model.layers.resize(n_layer); |
|
|
|
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd); |
|
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd); |
|
model.wte = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, n_embd, n_vocab); |
|
model.lm_head = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, n_embd, n_vocab); |
|
model.alibi_slopes = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 32); |
|
|
|
|
|
model.tensors["model/ln_f/g"] = model.ln_f_g; |
|
model.tensors["model/ln_f/b"] = model.ln_f_b; |
|
model.tensors["model/wte"] = model.wte; |
|
model.tensors["model/lm_head"] = model.lm_head; |
|
model.tensors["model/relative_pe/slopes"] = model.alibi_slopes; |
|
|
|
for (int i = 0; i < n_layer; ++i) { |
|
auto &layer = model.layers[i]; |
|
|
|
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd); |
|
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd); |
|
|
|
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd); |
|
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd); |
|
|
|
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, 3 * n_embd, n_embd ); |
|
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 3 * n_embd); |
|
layer.c_attn_attn_scb = |
|
ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 3 * n_embd); |
|
|
|
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, n_embd, n_embd); |
|
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd); |
|
layer.c_attn_proj_scb = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd); |
|
|
|
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, 6832, n_embd); |
|
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 6826); |
|
layer.c_mlp_fc_scb = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 6826); |
|
|
|
layer.c_mlp_fc2_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, n_embd, 6832 ); |
|
layer.c_mlp_fc2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 6826); |
|
layer.c_mlp_fc2_scb = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 6826); |
|
|
|
layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, n_embd, 6848); |
|
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd); |
|
layer.c_mlp_proj_scb = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd); |
|
|
|
|
|
model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g; |
|
model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b; |
|
|
|
model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g; |
|
model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b; |
|
|
|
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w; |
|
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b; |
|
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/scb"] = layer.c_attn_attn_scb; |
|
|
|
|
|
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = |
|
layer.c_attn_proj_w; |
|
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = |
|
layer.c_attn_proj_b; |
|
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/scb"] = |
|
layer.c_attn_proj_scb; |
|
|
|
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = |
|
layer.c_mlp_fc_w; |
|
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = |
|
layer.c_mlp_fc_b; |
|
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/scb"] = |
|
layer.c_mlp_fc_scb; |
|
|
|
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc2/w"] = |
|
layer.c_mlp_fc2_w; |
|
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc2/b"] = |
|
layer.c_mlp_fc2_b; |
|
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc2/scb"] = |
|
layer.c_mlp_fc2_scb; |
|
|
|
|
|
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = |
|
layer.c_mlp_proj_w; |
|
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = |
|
layer.c_mlp_proj_b; |
|
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/scb"] = |
|
layer.c_mlp_proj_scb; |
|
} |
|
} |
|
|
|
|
|
{ |
|
size_t total_size = 0; |
|
|
|
bool has_lm_head = false; |
|
|
|
while (true) { |
|
int32_t n_dims; |
|
int32_t length; |
|
int32_t ttype; |
|
|
|
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims)); |
|
fin.read(reinterpret_cast<char *>(&length), sizeof(length)); |
|
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype)); |
|
|
|
if (fin.eof()) { |
|
break; |
|
} |
|
|
|
int32_t nelements = 1; |
|
int32_t ne[2] = {1, 1}; |
|
for (int i = 0; i < n_dims; ++i) { |
|
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i])); |
|
nelements *= ne[i]; |
|
} |
|
|
|
std::string name(length, 0); |
|
fin.read(&name[0], length); |
|
|
|
printf("processing tensor '%s' in model file\n", name.data()); |
|
|
|
if (model.tensors.find(name.data()) == model.tensors.end()) { |
|
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, |
|
name.data()); |
|
return false; |
|
} |
|
|
|
auto tensor = model.tensors[name.data()]; |
|
if (ggml_nelements(tensor) != nelements) { |
|
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", |
|
__func__, name.data()); |
|
return false; |
|
} |
|
|
|
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { |
|
fprintf(stderr, |
|
"%s: tensor '%s' has wrong shape in model file: got [%d, %d], " |
|
"expected [%d, %d]\n", |
|
__func__, name.data(), (int)tensor->ne[0], (int)tensor->ne[1], |
|
ne[0], ne[1]); |
|
return false; |
|
} |
|
|
|
|
|
if (1) { |
|
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", |
|
name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), |
|
ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor)); |
|
} |
|
|
|
const size_t bpe = ggml_type_size(ggml_type(ttype)); |
|
|
|
if ((nelements * bpe) / ggml_blck_size(tensor->type) != |
|
ggml_nbytes(tensor)) { |
|
fprintf(stderr, |
|
"%s: tensor '%s' has wrong size in model file: got %zu, " |
|
"expected %zu\n", |
|
__func__, name.data(), ggml_nbytes(tensor), nelements * bpe); |
|
return false; |
|
} |
|
|
|
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor)); |
|
|
|
|
|
total_size += ggml_nbytes(tensor); |
|
} |
|
|
|
printf("%s: model size = %8.2f MB\n", __func__, |
|
total_size / 1024.0 / 1024.0); |
|
} |
|
|
|
fin.close(); |
|
|
|
return true; |
|
} |
|
|
|
int main(int argc, char **argv) { |
|
btlm_params params; |
|
btlm_model models; |
|
btlm_vocab vocab; |
|
|
|
btlm_model_load(params.model, models, vocab); |
|
|
|
return 0; |
|
} |