BRIA 2.3 ControlNet Generative Fill Fast
Trained exclusively on the largest multi-source commercial-grade licensed dataset, BRIA 2.3 Generative Fill guarantees best quality while safe for commercial use. The model provides full legal liability coverage for copyright and privacy infrigement and harmful content mitigation, as our dataset does not represent copyrighted materials, such as fictional characters, logos or trademarks, public figures, harmful content or privacy infringing content.
BRIA 2.3 Generative Fill is a model designed to fill masked regions in images based on user-provided textual prompts. The model can be applied in different scenarios, including object, replacement, addition, and modification within an image.
This model works with all types of masks, but is highly optimized to work best with blob-shaped masks which occupy more than 15% of the image area.
Join our Discord community for more information, tutorials, tools, and to connect with other users!
What's New
BRIA 2.3 ControlNet Generative Fill can be applied on top of BRIA 2.3 Text-to-Image and therefore enable to use Fast-LORA. This results in extremely fast generative fill model, requires only 1.6s using A10 GPU.
Model Description
- Developed by: BRIA AI
- Model type: Latent diffusion image-to-image model
- License: bria-2.3 inpainting Licensing terms & conditions.
- Purchase is required to license and access the model.
- Model Description: BRIA 2.3 Generative Fill was trained exclusively on a professional-grade, licensed dataset. It is designed for commercial use and includes full legal liability coverage.
- Resources for more information: BRIA AI
Get Access to the source code and pre-trained model
Interested in BRIA 2.3 Generative Fill? Our Model is available for purchase.
Purchasing access to BRIA 2.3 Generative Fill ensures royalty management and full liability for commercial use.
Are you a startup or a student? We encourage you to apply for our specialized Academia and Startup Programs to gain access. These programs are designed to support emerging businesses and academic pursuits with our cutting-edge technology.
Contact us today to unlock the potential of BRIA 2.3 Generative Fill!
By submitting the form above, you agree to BRIA’s Privacy policy and Terms & conditions.
How To Use
from diffusers import (
AutoencoderKL,
LCMScheduler,
)
from pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline
from controlnet import ControlNetModel, ControlNetConditioningEmbedding
import torch
import numpy as np
from PIL import Image
import requests
import PIL
from io import BytesIO
from torchvision import transforms
import pandas as pd
import os
def resize_image_to_retain_ratio(image):
pixel_number = 1024*1024
granularity_val = 8
ratio = image.size[0] / image.size[1]
width = int((pixel_number * ratio) ** 0.5)
width = width - (width % granularity_val)
height = int(pixel_number / width)
height = height - (height % granularity_val)
image = image.resize((width, height))
return image
def download_image(url):
response = requests.get(url)
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
def get_masked_image(image, image_mask, width, height):
image_mask = image_mask # fill area is white
image_mask = image_mask.resize((width, height)) # object to remove is white (1)
image_mask_pil = image_mask
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
image_mask = np.array(image_mask_pil.convert("L")).astype(np.float32) / 255.0
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
masked_image_to_present = image.copy()
masked_image_to_present[image_mask > 0.5] = (0.5,0.5,0.5) # set as masked pixel
image[image_mask > 0.5] = 0.5 # set as masked pixel - s.t. will be grey
image = Image.fromarray((image * 255.0).astype(np.uint8))
masked_image_to_present = Image.fromarray((masked_image_to_present * 255.0).astype(np.uint8))
return image, image_mask_pil, masked_image_to_present
image_transforms = transforms.Compose(
[
transforms.ToTensor(),
]
)
default_negative_prompt = "blurry"
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((1024, 1024))
mask_image = download_image(mask_url).resize((1024, 1024))
init_image = resize_image_to_retain_ratio(init_image)
width, height = init_image.size
mask_image = mask_image.convert("L").resize(init_image.size)
width, height = init_image.size
# Load, init model
controlnet = ControlNetModel().from_pretrained("briaai/BRIA-2.3-ControlNet-Generative-Fill", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet.to(dtype=torch.float16), torch_dtype=torch.float16, vae=vae) #force_zeros_for_empty_prompt=False, # vae=vae)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("briaai/BRIA-2.3-FAST-LORA")
pipe.fuse_lora()
pipe = pipe.to(device="cuda")
# pipe.enable_xformers_memory_efficient_attention()
generator = torch.Generator(device="cuda").manual_seed(123456)
vae = pipe.vae
masked_image, image_mask, masked_image_to_present = get_masked_image(init_image, mask_image, width, height)
masked_image_tensor = image_transforms(masked_image)
masked_image_tensor = (masked_image_tensor - 0.5) / 0.5
masked_image_tensor = masked_image_tensor.unsqueeze(0).to(device="cuda")
control_latents = vae.encode(
masked_image_tensor[:, :3, :, :].to(vae.dtype)
).latent_dist.sample()
control_latents = control_latents * vae.config.scaling_factor
image_mask = np.array(image_mask)[:,:]
mask_tensor = torch.tensor(image_mask, dtype=torch.float32)[None, ...]
# binarize the mask
mask_tensor = torch.where(mask_tensor > 128.0, 255.0, 0)
mask_tensor = mask_tensor / 255.0
mask_tensor = mask_tensor.to(device="cuda")
mask_resized = torch.nn.functional.interpolate(mask_tensor[None, ...], size=(control_latents.shape[2], control_latents.shape[3]), mode='nearest')
masked_image = torch.cat([control_latents, mask_resized], dim=1)
prompt = ""
gen_img = pipe(negative_prompt=default_negative_prompt, prompt=prompt,
controlnet_conditioning_scale=1.0,
num_inference_steps=12,
height=height, width=width,
image = masked_image, # control image
init_image = init_image,
mask_image = mask_tensor,
guidance_scale = 1.2,
generator=generator).images[0]
- Downloads last month
- 57