metadata
license: other
license_name: yi-license
license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE
datasets:
- ai2_arc
- unalignment/spicy-3.1
- codeparrot/apps
- facebook/belebele
- boolq
- jondurbin/cinematika-v0.1
- drop
- lmsys/lmsys-chat-1m
- TIGER-Lab/MathInstruct
- cais/mmlu
- Muennighoff/natural-instructions
- openbookqa
- piqa
- Vezora/Tested-22k-Python-Alpaca
- cakiki/rosetta-code
- Open-Orca/SlimOrca
- spider
- squad_v2
- migtissera/Synthia-v1.3
- datasets/winogrande
- nvidia/HelpSteer
- Intel/orca_dpo_pairs
- unalignment/toxic-dpo-v0.1
- jondurbin/truthy-dpo-v0.1
- allenai/ultrafeedback_binarized_cleaned
- Squish42/bluemoon-fandom-1-1-rp-cleaned
- LDJnr/Capybara
- JULIELab/EmoBank
- kingbri/PIPPA-shareGPT
A bagel, with everything
Just a fiction oriented 6bpw exl2 quantization of https://huggingface.co/jondurbin/bagel-dpo-34b-v0.2
Quantized on 300K tokens of two Vicuna format chats, a sci fi story and a fiction story at a long context. This should yield better storywriting performance than the default exl2 quantization.
Running
Being a Yi model, try running a lower temperature with ~0.05 MinP, a little repitition penalty, maybe mirostat with a low tau, and no other samplers. Yi tends to run "hot" by default.
24GB GPUs can run Yi-34B-200K models at 45K-75K context with exllamav2, and performant UIs like exui. I go into more detail in this post
Commands
First pass:
python convert.py --in_dir /home/alpha/FastModels/jondurbin_bagel-dpo-34b-v0.2 -o /home/alpha/FastModels/scratch -om /home/alpha/FastModels/bagelmeas.json --cal_dataset /home/alpha/Documents/stories.parquet -ml 32768 -mr 7 -ss 4096 -b 4.0 -hb 6 -nr
Second pass:
python convert.py --in_dir /home/alpha/FastModels/jondurbin_bagel-dpo-34b-v0.2 -o /home/alpha/FastModels/scratch -m /home/alpha/FastModels/bagelmeas.json --cal_dataset /home/alpha/Documents/stories.parquet -l 12288 -r 25 -ml 32768 -mr 9 -ss 4096 -b 4.0 -hb 6 -cf /home/alpha/FastModels/jondurbin_bagel-dpo-34b-v0.2-exl2-4bpw-fiction -nr