brunokreiner commited on
Commit
daab674
1 Parent(s): 7b1d0eb

Upload 10 files

Browse files
README.md CHANGED
@@ -1,186 +1,94 @@
1
  ---
2
- language:
3
- - en
4
  tags:
5
- - music
6
- ---
7
- # Model Card for Model ID
8
-
9
- <!-- Provide a quick summary of what the model is/does. -->
10
-
11
- Embeds song lyrics to 300 dimensions.
12
-
13
- # Model Details
14
-
15
- ## Model Description
16
-
17
- <!-- Provide a longer summary of what this model is. -->
18
-
19
- - **Developed by:** [More Information Needed]
20
- - **Shared by [optional]:** [More Information Needed]
21
- - **Model type:** bert-base-uncased trained with contrastive learning
22
- - **Language(s) (NLP):** [More Information Needed]
23
- - **License:** [More Information Needed]
24
- - **Finetuned from model [optional]:** [More Information Needed]
25
-
26
- ## Model Sources [optional]
27
-
28
- <!-- Provide the basic links for the model. -->
29
-
30
- - **Repository:** [More Information Needed]
31
- - **Paper [optional]:** [More Information Needed]
32
- - **Demo [optional]:** [More Information Needed]
33
-
34
- # Uses
35
-
36
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
37
-
38
- ## Direct Use
39
-
40
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
41
-
42
- [More Information Needed]
43
-
44
- ## Downstream Use [optional]
45
-
46
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
47
-
48
- [More Information Needed]
49
-
50
- ## Out-of-Scope Use
51
-
52
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
53
-
54
- [More Information Needed]
55
-
56
- # Bias, Risks, and Limitations
57
-
58
- ## Translate to English:
59
- chlussendlich existieren die Lyrics für 606'255 Songs. Um das weitere Vorgehen zu vereinfachen, wurden diese Songs durch die Python-Implementierung eines in Java implementierten Google Sprachdetektors \cite{nakatani2010langdetect} \cite{langdetectpy} gefiltert und nur die verbleibenden 480'964 englischen Lyrics werden weiter beachtet.
60
-
61
- \subsection{Weitere Probleme}
62
-
63
- Im Nachhinein wurden 109 Lyrics festgestellt, die Spezialcharaktere haben, welche nicht vom Cleanup fetgestellt wurden. Diese wurden mit dem Regex \glqq '[a-zA-Z|\'|0-9]'\grqq{} gematcht und im Training ignoriert. Im Training wurden aber trotzdem einige Lyrics miteinberechnet, die zwar keine Spezialcharaktere haben, aber nicht ganz Englisch sind. Dadurch encoded das Languagemodel auch Japanische / Koreanische / Chinesische / Russische / Griechische sowie Spezialcharakter aus lateinischer Sprachen, jedoch mit sehr wenigen Trainingsdaten. Diese Lyrics wurden nicht durch das Google Spracherkennungsmodell als \glqq nicht Englisch\grqq{} eingestuft, weil sie genügend englische Wörter haben. Wir nehmen an, dass diese Lyrics das Training nicht gross beeinflussen und man kann von circa 500 solcher Songs ausgehen.
64
-
65
- Einige Lyrics sind auch lateinigiserte Versionen von japanischen / koreanischen / chinesischen Lieder (manuell geprüft). Weitere Grenzfälle sind Lyrics mit akzentuierten Lyrics wie:
66
- \\[8pt]
67
- \glqq let your fists swang k i c k y o a s s oh yes k i c k y o a s s oh yes i say beat you say that ass\grqq{}
68
- \\[8pt]
69
- Eine Analyse fehlt über was genau mit diesen Wörtern im Embedding Space passiert.
70
-
71
- ## Recommendations
72
 
73
- bias, risk, technical limitations...
74
-
75
- ## How to Get Started with the Model
76
-
77
- Use the code below to get started with the model.
78
-
79
- [More Information Needed]
80
-
81
- # Training Details
82
-
83
- ## Training Data
84
-
85
- <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
-
87
-
88
-
89
- [More Information Needed]
90
-
91
- ## Training Procedure [optional]
92
-
93
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
-
95
- ### Preprocessing
96
-
97
- [More Information Needed]
98
-
99
- ### Speeds, Sizes, Times
100
-
101
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
-
103
- [More Information Needed]
104
-
105
- # Evaluation
106
-
107
- <!-- This section describes the evaluation protocols and provides the results. -->
108
-
109
- ## Testing Data, Factors & Metrics
110
-
111
- ### Testing Data
112
-
113
- <!-- This should link to a Data Card if possible. -->
114
-
115
- [More Information Needed]
116
-
117
- ### Factors
118
-
119
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
-
121
- [More Information Needed]
122
 
123
- ### Metrics
124
 
125
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
 
127
- [More Information Needed]
128
 
129
- ## Results
130
 
131
- [More Information Needed]
132
 
133
- ### Summary
 
 
134
 
 
135
 
 
 
 
136
 
137
- # Model Examination [optional]
 
 
 
138
 
139
- <!-- Relevant interpretability work for the model goes here -->
140
 
141
- [More Information Needed]
142
 
143
- # Environmental Impact
 
144
 
145
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
 
146
 
147
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
 
149
- - **Hardware Type:** [More Information Needed]
150
- - **Hours used:** [More Information Needed]
151
- - **Cloud Provider:** [More Information Needed]
152
- - **Compute Region:** [More Information Needed]
153
- - **Carbon Emitted:** [More Information Needed]
154
 
155
- # Technical Specifications [optional]
156
 
157
- ## Model Architecture and Objective
 
158
 
159
- [More Information Needed]
 
 
160
 
161
- ## Compute Infrastructure
 
162
 
163
- [More Information Needed]
 
 
164
 
165
- ### Hardware
 
166
 
167
- [More Information Needed]
 
 
168
 
169
- ### Software
170
 
171
- [More Information Needed]
172
 
173
- # Citation [optional]
174
 
175
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
 
177
- **BibTeX:**
178
 
179
- [More Information Needed]
180
 
181
- # Model Card Contact
182
 
183
- for more info contact
184
- brunokreiner@hotmail.ch
 
 
 
 
 
185
 
 
186
 
 
 
1
  ---
2
+ pipeline_tag: sentence-similarity
 
3
  tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
+ # {MODEL_NAME}
12
 
13
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 300 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
+ <!--- Describe your model here -->
16
 
17
+ ## Usage (Sentence-Transformers)
18
 
19
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
 
21
+ ```
22
+ pip install -U sentence-transformers
23
+ ```
24
 
25
+ Then you can use the model like this:
26
 
27
+ ```python
28
+ from sentence_transformers import SentenceTransformer
29
+ sentences = ["This is an example sentence", "Each sentence is converted"]
30
 
31
+ model = SentenceTransformer('{MODEL_NAME}')
32
+ embeddings = model.encode(sentences)
33
+ print(embeddings)
34
+ ```
35
 
 
36
 
 
37
 
38
+ ## Usage (HuggingFace Transformers)
39
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
40
 
41
+ ```python
42
+ from transformers import AutoTokenizer, AutoModel
43
+ import torch
44
 
 
45
 
46
+ #Mean Pooling - Take attention mask into account for correct averaging
47
+ def mean_pooling(model_output, attention_mask):
48
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
49
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
50
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
51
 
 
52
 
53
+ # Sentences we want sentence embeddings for
54
+ sentences = ['This is an example sentence', 'Each sentence is converted']
55
 
56
+ # Load model from HuggingFace Hub
57
+ tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
58
+ model = AutoModel.from_pretrained('{MODEL_NAME}')
59
 
60
+ # Tokenize sentences
61
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
62
 
63
+ # Compute token embeddings
64
+ with torch.no_grad():
65
+ model_output = model(**encoded_input)
66
 
67
+ # Perform pooling. In this case, mean pooling.
68
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
69
 
70
+ print("Sentence embeddings:")
71
+ print(sentence_embeddings)
72
+ ```
73
 
 
74
 
 
75
 
76
+ ## Evaluation Results
77
 
78
+ <!--- Describe how your model was evaluated -->
79
 
80
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
 
 
82
 
 
83
 
84
+ ## Full Model Architecture
85
+ ```
86
+ SentenceTransformer(
87
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
88
+ (1): Pooling({'word_embedding_dimension': 300, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
89
+ )
90
+ ```
91
 
92
+ ## Citing & Authors
93
 
94
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/notebooks/p5/lyrics-bert-new-90000/90000/0_SentenceTransformer/",
3
+ "add_cross_attention": true,
4
+ "architectures": [
5
+ "BertModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 300,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "is_decoder": true,
15
+ "layer_norm_eps": 1e-12,
16
+ "max_position_embeddings": 512,
17
+ "model_type": "bert",
18
+ "num_attention_heads": 2,
19
+ "num_hidden_layers": 2,
20
+ "pad_token_id": 0,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.20.1",
24
+ "type_vocab_size": 2,
25
+ "use_cache": true,
26
+ "vocab_size": 52000
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.20.1",
5
+ "pytorch": "1.12.0+cu116"
6
+ }
7
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9a2878052f3261475f932eccc2e45fd9159dd3b74e60d69bf5e8d6330b7a23c
3
+ size 83968433
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "do_lower_case": true,
4
+ "mask_token": "[MASK]",
5
+ "model_max_length": 512,
6
+ "name_or_path": "/notebooks/p5/lyrics-bert-new-90000/90000/0_SentenceTransformer/",
7
+ "pad_token": "[PAD]",
8
+ "sep_token": "[SEP]",
9
+ "special_tokens_map_file": null,
10
+ "strip_accents": null,
11
+ "tokenize_chinese_chars": true,
12
+ "tokenizer_class": "BertTokenizer",
13
+ "unk_token": "[UNK]"
14
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff