license: agpl-3.0 ---from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments from datasets import load_dataset import numpy as np

Carica il modello e il tokenizer

tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2LMHeadModel.from_pretrained('gpt2')

Carica un dataset personalizzato (esempio con CSV)

dataset = load_dataset('csv', data_files={'train': 'path/to/train.csv', 'test': 'path/to/test.csv'})

Tokenizzazione del dataset

def tokenize_function(examples): return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)

tokenized_datasets = dataset.map(tokenize_function, batched=True)

Configura i parametri di addestramento

training_args = TrainingArguments( output_dir='./results', num_train_epochs=3, per_device_train_batch_size=4, save_steps=10_000, save_total_limit=2, evaluation_strategy="epoch" )

Funzione per calcolare le metriche

def compute_metrics(eval_pred): logits, labels = eval_pred predictions = np.argmax(logits, axis=-1) return metric.compute(predictions=predictions, references=labels)

Crea il trainer

trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets['train'], eval_dataset=tokenized_datasets['test'], compute_metrics=compute_metrics )

Esegui l'addestramento

trainer.train()

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .