Edit model card

distilbert-base-uncased-pii-200

This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4704
  • Overall Precision: 0.0
  • Overall Recall: 0.0
  • Overall F1: 0.0
  • Overall Accuracy: 0.8065
  • Email F1: 0.0
  • Lastname F1: 0.0
  • Prefix F1: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Overall Precision Overall Recall Overall F1 Overall Accuracy City F1 Email F1 Jobtype F1 Lastname F1 Prefix F1 Username F1
No log 1.0 1 2.5786 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
No log 2.0 2 2.3959 0.0 0.0 0.0 0.1774 0.0 0.0 0.0 0.0 0.0 0.0
No log 3.0 3 2.0696 0.0 0.0 0.0 0.8065 0.0 0.0 0.0
No log 4.0 4 1.8231 0.0 0.0 0.0 0.8065 0.0 0.0 0.0
No log 5.0 5 1.6430 0.0 0.0 0.0 0.8065 0.0 0.0 0.0
No log 6.0 6 1.5266 0.0 0.0 0.0 0.8065 0.0 0.0 0.0
No log 7.0 7 1.4704 0.0 0.0 0.0 0.8065 0.0 0.0 0.0

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
66.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for burkelive/distilbert-base-uncased-pii-200

Finetuned
(6755)
this model