|
--- |
|
library_name: transformers |
|
license: gemma |
|
base_model: google/gemma-7b |
|
tags: |
|
- alignment-handbook |
|
- trl |
|
- orpo |
|
- generated_from_trainer |
|
- trl |
|
- orpo |
|
- alignment-handbook |
|
- generated_from_trainer |
|
datasets: |
|
- silviasapora/low_quality_dpo7k |
|
model-index: |
|
- name: gemma-7b-borpo-low-quality-v4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gemma-7b-borpo-low-quality-v4 |
|
|
|
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the silviasapora/low_quality_dpo7k dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.8577 |
|
- Rewards/chosen: -0.5993 |
|
- Rewards/rejected: -0.7602 |
|
- Rewards/accuracies: 0.6143 |
|
- Rewards/margins: 0.1610 |
|
- Logps/rejected: -1.5205 |
|
- Logps/chosen: -1.1986 |
|
- Logits/rejected: 240.3907 |
|
- Logits/chosen: 301.1215 |
|
- Nll Loss: 1.5532 |
|
- Log Odds Ratio: -0.6421 |
|
- Log Odds Chosen: 0.4396 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: inverse_sqrt |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:--------------:|:---------------:| |
|
| 1.8227 | 1.0 | 84 | 1.9616 | -0.6050 | -0.6743 | 0.5 | 0.0693 | -1.3486 | -1.2099 | 257.8447 | 315.1940 | 1.6719 | -0.6903 | 0.1646 | |
|
| 1.4803 | 2.0 | 168 | 1.7681 | -0.5462 | -0.6508 | 0.5286 | 0.1046 | -1.3017 | -1.0924 | 274.3526 | 328.0207 | 1.4854 | -0.6718 | 0.2561 | |
|
| 0.9109 | 3.0 | 252 | 1.8577 | -0.5993 | -0.7602 | 0.6143 | 0.1610 | -1.5205 | -1.1986 | 240.3907 | 301.1215 | 1.5532 | -0.6421 | 0.4396 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.0 |
|
- Tokenizers 0.19.1 |
|
|