Indonesian BERT2BERT Summarization Model

Finetuned EncoderDecoder model using BERT-base and GPT2-small for Indonesian text summarization.

Finetuning Corpus

bert2gpt-indonesian-summarization model is based on cahya/bert-base-indonesian-1.5G and cahya/gpt2-small-indonesian-522Mby cahya, finetuned using id_liputan6 dataset.

Load Finetuned Model

from transformers import BertTokenizer, EncoderDecoderModel

tokenizer = BertTokenizer.from_pretrained("cahya/bert2gpt-indonesian-summarization")
tokenizer.bos_token = tokenizer.cls_token
tokenizer.eos_token = tokenizer.sep_token
model = EncoderDecoderModel.from_pretrained("cahya/bert2gpt-indonesian-summarization")

Code Sample

from transformers import BertTokenizer, EncoderDecoderModel

tokenizer = BertTokenizer.from_pretrained("cahya/bert2gpt-indonesian-summarization")
tokenizer.bos_token = tokenizer.cls_token
tokenizer.eos_token = tokenizer.sep_token
model = EncoderDecoderModel.from_pretrained("cahya/bert2gpt-indonesian-summarization")

# 
ARTICLE_TO_SUMMARIZE = ""

# generate summary
input_ids = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt')
summary_ids = model.generate(input_ids,
            min_length=20,
            max_length=80, 
            num_beams=10,
            repetition_penalty=2.5, 
            length_penalty=1.0, 
            early_stopping=True,
            no_repeat_ngram_size=2,
            use_cache=True,
            do_sample = True,
            temperature = 0.8,
            top_k = 50,
            top_p = 0.95)

summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print(summary_text)

Output:


Downloads last month
397
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train cahya/bert2gpt-indonesian-summarization

Space using cahya/bert2gpt-indonesian-summarization 1