classify-ISIN-STEP6_binary
This model is a fine-tuned version of albert/albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0002
- Accuracy: 1.0
- F1: 1.0
- Precision: 1.0
- Recall: 1.0
- Accuracy Label Gd622:null: 1.0
- Accuracy Label Gd622:yes: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label Gd622:null | Accuracy Label Gd622:yes |
---|---|---|---|---|---|---|---|---|---|
0.0056 | 2.4691 | 100 | 0.0042 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
0.001 | 4.9383 | 200 | 0.0009 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0005 | 7.4074 | 300 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0003 | 9.8765 | 400 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0002 | 12.3457 | 500 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0002 | 14.8148 | 600 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0002 | 17.2840 | 700 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0002 | 19.7531 | 800 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Framework versions
- Transformers 4.43.3
- Pytorch 2.4.0
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 108
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for calculito/classify-ISIN-STEP6_binary
Base model
albert/albert-base-v2