classify-ISIN-STEP8_binary
This model is a fine-tuned version of albert/albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0001
- Accuracy: 1.0
- F1: 1.0
- Precision: 1.0
- Recall: 1.0
- Accuracy Label Gd622:no: 1.0
- Accuracy Label Gd622:yes: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label Gd622:no | Accuracy Label Gd622:yes |
---|---|---|---|---|---|---|---|---|---|
0.0992 | 0.1610 | 100 | 0.0070 | 0.9987 | 0.9987 | 0.9987 | 0.9987 | 0.9982 | 1.0 |
0.0082 | 0.3221 | 200 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0002 | 0.4831 | 300 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0001 | 0.6441 | 400 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0001 | 0.8052 | 500 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0052 | 0.9662 | 600 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Framework versions
- Transformers 4.43.3
- Pytorch 2.4.0
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 107
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for calculito/classify-ISIN-STEP8_binary
Base model
albert/albert-base-v2