|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: cardiffnlp/twitter-roberta-large-hate-latest |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: twitter-roberta-large-hate-latest-hinglish-binary |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# twitter-roberta-large-hate-latest-hinglish-binary |
|
|
|
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-large-hate-latest](https://huggingface.co/cardiffnlp/twitter-roberta-large-hate-latest) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8288 |
|
- Accuracy: 0.6779 |
|
- Precision: 0.6455 |
|
- Recall: 0.6188 |
|
- F1: 0.6218 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.6392 | 0.9709 | 25 | 0.6656 | 0.6376 | 0.3188 | 0.5 | 0.3894 | |
|
| 0.63 | 1.9806 | 51 | 0.7095 | 0.6403 | 0.8197 | 0.5038 | 0.3975 | |
|
| 0.6117 | 2.9903 | 77 | 0.6043 | 0.6921 | 0.6720 | 0.6174 | 0.6176 | |
|
| 0.5974 | 4.0 | 103 | 0.6540 | 0.6730 | 0.6787 | 0.5667 | 0.5369 | |
|
| 0.5512 | 4.9709 | 128 | 0.6216 | 0.6948 | 0.6745 | 0.6228 | 0.6243 | |
|
| 0.5162 | 5.9806 | 154 | 0.6164 | 0.7057 | 0.6873 | 0.6394 | 0.6438 | |
|
| 0.4525 | 6.9903 | 180 | 0.6715 | 0.6948 | 0.6757 | 0.6211 | 0.6221 | |
|
| 0.4207 | 8.0 | 206 | 0.7581 | 0.7084 | 0.6844 | 0.6562 | 0.6620 | |
|
| 0.3381 | 8.9709 | 231 | 0.7439 | 0.6812 | 0.6560 | 0.6575 | 0.6567 | |
|
| 0.3016 | 9.7087 | 250 | 0.7481 | 0.7030 | 0.6762 | 0.6649 | 0.6688 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|