callmesan's picture
End of training
ac1b356 verified
metadata
base_model: Vignesh-M/Indic-whisper
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: whisper-indic-audio-abuse-feature
    results: []

whisper-indic-audio-abuse-feature

This model is a fine-tuned version of Vignesh-M/Indic-whisper on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5056
  • Accuracy: 0.8868
  • Macro Precision: 0.8642
  • Macro Recall: 0.8509
  • Macro F1-score: 0.8572

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro Precision Macro Recall Macro F1-score
0.4635 0.4367 50 0.4010 0.8020 0.8176 0.8096 0.8014
0.3403 0.8734 100 0.3162 0.8684 0.8685 0.8668 0.8675
0.2689 1.3100 150 0.3025 0.8807 0.8838 0.8774 0.8793
0.2339 1.7467 200 0.3019 0.8782 0.8776 0.8777 0.8776
0.1723 2.1834 250 0.3715 0.8868 0.8870 0.8854 0.8861
0.1027 2.6201 300 0.3472 0.8930 0.8937 0.8912 0.8921
0.123 3.0568 350 0.3690 0.8795 0.8855 0.8751 0.8776
0.0497 3.4934 400 0.4423 0.8918 0.8916 0.8907 0.8911
0.0534 3.9301 450 0.3937 0.9041 0.9048 0.9024 0.9033
0.0235 4.3668 500 0.4753 0.8979 0.8993 0.8958 0.8970
0.0196 4.8035 550 0.5204 0.8967 0.8982 0.8944 0.8957

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1