File size: 14,560 Bytes
f5bb0c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
#ifdef WITH_PYTHON_LAYER
#include "boost/python.hpp"
namespace bp = boost::python;
#endif
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <cstring>
#include <map>
#include <string>
#include <vector>
#include "boost/algorithm/string.hpp"
#include "caffe/caffe.hpp"
#include "caffe/util/signal_handler.h"
using caffe::Blob;
using caffe::Caffe;
using caffe::Net;
using caffe::Layer;
using caffe::Solver;
using caffe::shared_ptr;
using caffe::string;
using caffe::Timer;
using caffe::vector;
using std::ostringstream;
DEFINE_string(gpu, "",
"Optional; run in GPU mode on given device IDs separated by ','."
"Use '-gpu all' to run on all available GPUs. The effective training "
"batch size is multiplied by the number of devices.");
DEFINE_string(solver, "",
"The solver definition protocol buffer text file.");
DEFINE_string(model, "",
"The model definition protocol buffer text file.");
DEFINE_string(phase, "",
"Optional; network phase (TRAIN or TEST). Only used for 'time'.");
DEFINE_int32(level, 0,
"Optional; network level.");
DEFINE_string(stage, "",
"Optional; network stages (not to be confused with phase), "
"separated by ','.");
DEFINE_string(snapshot, "",
"Optional; the snapshot solver state to resume training.");
DEFINE_string(weights, "",
"Optional; the pretrained weights to initialize finetuning, "
"separated by ','. Cannot be set simultaneously with snapshot.");
DEFINE_int32(iterations, 50,
"The number of iterations to run.");
DEFINE_string(sigint_effect, "stop",
"Optional; action to take when a SIGINT signal is received: "
"snapshot, stop or none.");
DEFINE_string(sighup_effect, "snapshot",
"Optional; action to take when a SIGHUP signal is received: "
"snapshot, stop or none.");
// A simple registry for caffe commands.
typedef int (*BrewFunction)();
typedef std::map<caffe::string, BrewFunction> BrewMap;
BrewMap g_brew_map;
#define RegisterBrewFunction(func) \
namespace { \
class __Registerer_##func { \
public: /* NOLINT */ \
__Registerer_##func() { \
g_brew_map[#func] = &func; \
} \
}; \
__Registerer_##func g_registerer_##func; \
}
static BrewFunction GetBrewFunction(const caffe::string& name) {
if (g_brew_map.count(name)) {
return g_brew_map[name];
} else {
LOG(ERROR) << "Available caffe actions:";
for (BrewMap::iterator it = g_brew_map.begin();
it != g_brew_map.end(); ++it) {
LOG(ERROR) << "\t" << it->first;
}
LOG(FATAL) << "Unknown action: " << name;
return NULL; // not reachable, just to suppress old compiler warnings.
}
}
// Parse GPU ids or use all available devices
static void get_gpus(vector<int>* gpus) {
if (FLAGS_gpu == "all") {
int count = 0;
#ifndef CPU_ONLY
CUDA_CHECK(cudaGetDeviceCount(&count));
#else
NO_GPU;
#endif
for (int i = 0; i < count; ++i) {
gpus->push_back(i);
}
} else if (FLAGS_gpu.size()) {
vector<string> strings;
boost::split(strings, FLAGS_gpu, boost::is_any_of(","));
for (int i = 0; i < strings.size(); ++i) {
gpus->push_back(boost::lexical_cast<int>(strings[i]));
}
} else {
CHECK_EQ(gpus->size(), 0);
}
}
// Parse phase from flags
caffe::Phase get_phase_from_flags(caffe::Phase default_value) {
if (FLAGS_phase == "")
return default_value;
if (FLAGS_phase == "TRAIN")
return caffe::TRAIN;
if (FLAGS_phase == "TEST")
return caffe::TEST;
LOG(FATAL) << "phase must be \"TRAIN\" or \"TEST\"";
return caffe::TRAIN; // Avoid warning
}
// Parse stages from flags
vector<string> get_stages_from_flags() {
vector<string> stages;
boost::split(stages, FLAGS_stage, boost::is_any_of(","));
return stages;
}
// caffe commands to call by
// caffe <command> <args>
//
// To add a command, define a function "int command()" and register it with
// RegisterBrewFunction(action);
// Device Query: show diagnostic information for a GPU device.
int device_query() {
LOG(INFO) << "Querying GPUs " << FLAGS_gpu;
vector<int> gpus;
get_gpus(&gpus);
for (int i = 0; i < gpus.size(); ++i) {
caffe::Caffe::SetDevice(gpus[i]);
caffe::Caffe::DeviceQuery();
}
return 0;
}
RegisterBrewFunction(device_query);
// Translate the signal effect the user specified on the command-line to the
// corresponding enumeration.
caffe::SolverAction::Enum GetRequestedAction(
const std::string& flag_value) {
if (flag_value == "stop") {
return caffe::SolverAction::STOP;
}
if (flag_value == "snapshot") {
return caffe::SolverAction::SNAPSHOT;
}
if (flag_value == "none") {
return caffe::SolverAction::NONE;
}
LOG(FATAL) << "Invalid signal effect \""<< flag_value << "\" was specified";
}
// Train / Finetune a model.
int train() {
CHECK_GT(FLAGS_solver.size(), 0) << "Need a solver definition to train.";
CHECK(!FLAGS_snapshot.size() || !FLAGS_weights.size())
<< "Give a snapshot to resume training or weights to finetune "
"but not both.";
vector<string> stages = get_stages_from_flags();
caffe::SolverParameter solver_param;
caffe::ReadSolverParamsFromTextFileOrDie(FLAGS_solver, &solver_param);
solver_param.mutable_train_state()->set_level(FLAGS_level);
for (int i = 0; i < stages.size(); i++) {
solver_param.mutable_train_state()->add_stage(stages[i]);
}
// If the gpus flag is not provided, allow the mode and device to be set
// in the solver prototxt.
if (FLAGS_gpu.size() == 0
&& solver_param.has_solver_mode()
&& solver_param.solver_mode() == caffe::SolverParameter_SolverMode_GPU) {
if (solver_param.has_device_id()) {
FLAGS_gpu = "" +
boost::lexical_cast<string>(solver_param.device_id());
} else { // Set default GPU if unspecified
FLAGS_gpu = "" + boost::lexical_cast<string>(0);
}
}
vector<int> gpus;
get_gpus(&gpus);
if (gpus.size() == 0) {
LOG(INFO) << "Use CPU.";
Caffe::set_mode(Caffe::CPU);
} else {
ostringstream s;
for (int i = 0; i < gpus.size(); ++i) {
s << (i ? ", " : "") << gpus[i];
}
LOG(INFO) << "Using GPUs " << s.str();
#ifndef CPU_ONLY
cudaDeviceProp device_prop;
for (int i = 0; i < gpus.size(); ++i) {
cudaGetDeviceProperties(&device_prop, gpus[i]);
LOG(INFO) << "GPU " << gpus[i] << ": " << device_prop.name;
}
#endif
solver_param.set_device_id(gpus[0]);
Caffe::SetDevice(gpus[0]);
Caffe::set_mode(Caffe::GPU);
Caffe::set_solver_count(gpus.size());
}
caffe::SignalHandler signal_handler(
GetRequestedAction(FLAGS_sigint_effect),
GetRequestedAction(FLAGS_sighup_effect));
if (FLAGS_snapshot.size()) {
solver_param.clear_weights();
} else if (FLAGS_weights.size()) {
solver_param.clear_weights();
solver_param.add_weights(FLAGS_weights);
}
shared_ptr<caffe::Solver<float> >
solver(caffe::SolverRegistry<float>::CreateSolver(solver_param));
solver->SetActionFunction(signal_handler.GetActionFunction());
if (FLAGS_snapshot.size()) {
LOG(INFO) << "Resuming from " << FLAGS_snapshot;
solver->Restore(FLAGS_snapshot.c_str());
}
LOG(INFO) << "Starting Optimization";
if (gpus.size() > 1) {
#ifdef USE_NCCL
caffe::NCCL<float> nccl(solver);
nccl.Run(gpus, FLAGS_snapshot.size() > 0 ? FLAGS_snapshot.c_str() : NULL);
#else
LOG(FATAL) << "Multi-GPU execution not available - rebuild with USE_NCCL";
#endif
} else {
solver->Solve();
}
LOG(INFO) << "Optimization Done.";
return 0;
}
RegisterBrewFunction(train);
// Test: score a model.
int test() {
CHECK_GT(FLAGS_model.size(), 0) << "Need a model definition to score.";
CHECK_GT(FLAGS_weights.size(), 0) << "Need model weights to score.";
vector<string> stages = get_stages_from_flags();
// Set device id and mode
vector<int> gpus;
get_gpus(&gpus);
if (gpus.size() != 0) {
LOG(INFO) << "Use GPU with device ID " << gpus[0];
#ifndef CPU_ONLY
cudaDeviceProp device_prop;
cudaGetDeviceProperties(&device_prop, gpus[0]);
LOG(INFO) << "GPU device name: " << device_prop.name;
#endif
Caffe::SetDevice(gpus[0]);
Caffe::set_mode(Caffe::GPU);
} else {
LOG(INFO) << "Use CPU.";
Caffe::set_mode(Caffe::CPU);
}
// Instantiate the caffe net.
Net<float> caffe_net(FLAGS_model, caffe::TEST, FLAGS_level, &stages);
caffe_net.CopyTrainedLayersFrom(FLAGS_weights);
LOG(INFO) << "Running for " << FLAGS_iterations << " iterations.";
vector<int> test_score_output_id;
vector<float> test_score;
float loss = 0;
for (int i = 0; i < FLAGS_iterations; ++i) {
float iter_loss;
const vector<Blob<float>*>& result =
caffe_net.Forward(&iter_loss);
loss += iter_loss;
int idx = 0;
for (int j = 0; j < result.size(); ++j) {
const float* result_vec = result[j]->cpu_data();
for (int k = 0; k < result[j]->count(); ++k, ++idx) {
const float score = result_vec[k];
if (i == 0) {
test_score.push_back(score);
test_score_output_id.push_back(j);
} else {
test_score[idx] += score;
}
const std::string& output_name = caffe_net.blob_names()[
caffe_net.output_blob_indices()[j]];
LOG(INFO) << "Batch " << i << ", " << output_name << " = " << score;
}
}
}
loss /= FLAGS_iterations;
LOG(INFO) << "Loss: " << loss;
for (int i = 0; i < test_score.size(); ++i) {
const std::string& output_name = caffe_net.blob_names()[
caffe_net.output_blob_indices()[test_score_output_id[i]]];
const float loss_weight = caffe_net.blob_loss_weights()[
caffe_net.output_blob_indices()[test_score_output_id[i]]];
std::ostringstream loss_msg_stream;
const float mean_score = test_score[i] / FLAGS_iterations;
if (loss_weight) {
loss_msg_stream << " (* " << loss_weight
<< " = " << loss_weight * mean_score << " loss)";
}
LOG(INFO) << output_name << " = " << mean_score << loss_msg_stream.str();
}
return 0;
}
RegisterBrewFunction(test);
// Time: benchmark the execution time of a model.
int time() {
CHECK_GT(FLAGS_model.size(), 0) << "Need a model definition to time.";
caffe::Phase phase = get_phase_from_flags(caffe::TRAIN);
vector<string> stages = get_stages_from_flags();
// Set device id and mode
vector<int> gpus;
get_gpus(&gpus);
if (gpus.size() != 0) {
LOG(INFO) << "Use GPU with device ID " << gpus[0];
Caffe::SetDevice(gpus[0]);
Caffe::set_mode(Caffe::GPU);
} else {
LOG(INFO) << "Use CPU.";
Caffe::set_mode(Caffe::CPU);
}
// Instantiate the caffe net.
Net<float> caffe_net(FLAGS_model, phase, FLAGS_level, &stages);
// Do a clean forward and backward pass, so that memory allocation are done
// and future iterations will be more stable.
LOG(INFO) << "Performing Forward";
// Note that for the speed benchmark, we will assume that the network does
// not take any input blobs.
float initial_loss;
caffe_net.Forward(&initial_loss);
LOG(INFO) << "Initial loss: " << initial_loss;
LOG(INFO) << "Performing Backward";
caffe_net.Backward();
const vector<shared_ptr<Layer<float> > >& layers = caffe_net.layers();
const vector<vector<Blob<float>*> >& bottom_vecs = caffe_net.bottom_vecs();
const vector<vector<Blob<float>*> >& top_vecs = caffe_net.top_vecs();
const vector<vector<bool> >& bottom_need_backward =
caffe_net.bottom_need_backward();
LOG(INFO) << "*** Benchmark begins ***";
LOG(INFO) << "Testing for " << FLAGS_iterations << " iterations.";
Timer total_timer;
total_timer.Start();
Timer forward_timer;
Timer backward_timer;
Timer timer;
std::vector<double> forward_time_per_layer(layers.size(), 0.0);
std::vector<double> backward_time_per_layer(layers.size(), 0.0);
double forward_time = 0.0;
double backward_time = 0.0;
for (int j = 0; j < FLAGS_iterations; ++j) {
Timer iter_timer;
iter_timer.Start();
forward_timer.Start();
for (int i = 0; i < layers.size(); ++i) {
timer.Start();
layers[i]->Forward(bottom_vecs[i], top_vecs[i]);
forward_time_per_layer[i] += timer.MicroSeconds();
}
forward_time += forward_timer.MicroSeconds();
backward_timer.Start();
for (int i = layers.size() - 1; i >= 0; --i) {
timer.Start();
layers[i]->Backward(top_vecs[i], bottom_need_backward[i],
bottom_vecs[i]);
backward_time_per_layer[i] += timer.MicroSeconds();
}
backward_time += backward_timer.MicroSeconds();
LOG(INFO) << "Iteration: " << j + 1 << " forward-backward time: "
<< iter_timer.MilliSeconds() << " ms.";
}
LOG(INFO) << "Average time per layer: ";
for (int i = 0; i < layers.size(); ++i) {
const caffe::string& layername = layers[i]->layer_param().name();
LOG(INFO) << std::setfill(' ') << std::setw(10) << layername <<
"\tforward: " << forward_time_per_layer[i] / 1000 /
FLAGS_iterations << " ms.";
LOG(INFO) << std::setfill(' ') << std::setw(10) << layername <<
"\tbackward: " << backward_time_per_layer[i] / 1000 /
FLAGS_iterations << " ms.";
}
total_timer.Stop();
LOG(INFO) << "Average Forward pass: " << forward_time / 1000 /
FLAGS_iterations << " ms.";
LOG(INFO) << "Average Backward pass: " << backward_time / 1000 /
FLAGS_iterations << " ms.";
LOG(INFO) << "Average Forward-Backward: " << total_timer.MilliSeconds() /
FLAGS_iterations << " ms.";
LOG(INFO) << "Total Time: " << total_timer.MilliSeconds() << " ms.";
LOG(INFO) << "*** Benchmark ends ***";
return 0;
}
RegisterBrewFunction(time);
int main(int argc, char** argv) {
// Print output to stderr (while still logging).
FLAGS_alsologtostderr = 1;
// Set version
gflags::SetVersionString(AS_STRING(CAFFE_VERSION));
// Usage message.
gflags::SetUsageMessage("command line brew\n"
"usage: caffe <command> <args>\n\n"
"commands:\n"
" train train or finetune a model\n"
" test score a model\n"
" device_query show GPU diagnostic information\n"
" time benchmark model execution time");
// Run tool or show usage.
caffe::GlobalInit(&argc, &argv);
if (argc == 2) {
#ifdef WITH_PYTHON_LAYER
try {
#endif
return GetBrewFunction(caffe::string(argv[1]))();
#ifdef WITH_PYTHON_LAYER
} catch (bp::error_already_set) {
PyErr_Print();
return 1;
}
#endif
} else {
gflags::ShowUsageWithFlagsRestrict(argv[0], "tools/caffe");
}
}
|