|
#include <string> |
|
#include <vector> |
|
|
|
#include "boost/algorithm/string.hpp" |
|
#include "google/protobuf/text_format.h" |
|
|
|
#include "caffe/blob.hpp" |
|
#include "caffe/common.hpp" |
|
#include "caffe/net.hpp" |
|
#include "caffe/proto/caffe.pb.h" |
|
#include "caffe/util/db.hpp" |
|
#include "caffe/util/format.hpp" |
|
#include "caffe/util/io.hpp" |
|
|
|
using caffe::Blob; |
|
using caffe::Caffe; |
|
using caffe::Datum; |
|
using caffe::Net; |
|
using std::string; |
|
namespace db = caffe::db; |
|
|
|
template<typename Dtype> |
|
int feature_extraction_pipeline(int argc, char** argv); |
|
|
|
int main(int argc, char** argv) { |
|
return feature_extraction_pipeline<float>(argc, argv); |
|
|
|
} |
|
|
|
template<typename Dtype> |
|
int feature_extraction_pipeline(int argc, char** argv) { |
|
::google::InitGoogleLogging(argv[0]); |
|
const int num_required_args = 7; |
|
if (argc < num_required_args) { |
|
LOG(ERROR)<< |
|
"This program takes in a trained network and an input data layer, and then" |
|
" extract features of the input data produced by the net.\n" |
|
"Usage: extract_features pretrained_net_param" |
|
" feature_extraction_proto_file extract_feature_blob_name1[,name2,...]" |
|
" save_feature_dataset_name1[,name2,...] num_mini_batches db_type" |
|
" [CPU/GPU] [DEVICE_ID=0]\n" |
|
"Note: you can extract multiple features in one pass by specifying" |
|
" multiple feature blob names and dataset names separated by ','." |
|
" The names cannot contain white space characters and the number of blobs" |
|
" and datasets must be equal."; |
|
return 1; |
|
} |
|
int arg_pos = num_required_args; |
|
|
|
arg_pos = num_required_args; |
|
if (argc > arg_pos && strcmp(argv[arg_pos], "GPU") == 0) { |
|
LOG(ERROR)<< "Using GPU"; |
|
int device_id = 0; |
|
if (argc > arg_pos + 1) { |
|
device_id = atoi(argv[arg_pos + 1]); |
|
CHECK_GE(device_id, 0); |
|
} |
|
LOG(ERROR) << "Using Device_id=" << device_id; |
|
Caffe::SetDevice(device_id); |
|
Caffe::set_mode(Caffe::GPU); |
|
} else { |
|
LOG(ERROR) << "Using CPU"; |
|
Caffe::set_mode(Caffe::CPU); |
|
} |
|
|
|
arg_pos = 0; |
|
std::string pretrained_binary_proto(argv[++arg_pos]); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
std::string feature_extraction_proto(argv[++arg_pos]); |
|
boost::shared_ptr<Net<Dtype> > feature_extraction_net( |
|
new Net<Dtype>(feature_extraction_proto, caffe::TEST)); |
|
feature_extraction_net->CopyTrainedLayersFrom(pretrained_binary_proto); |
|
|
|
std::string extract_feature_blob_names(argv[++arg_pos]); |
|
std::vector<std::string> blob_names; |
|
boost::split(blob_names, extract_feature_blob_names, boost::is_any_of(",")); |
|
|
|
std::string save_feature_dataset_names(argv[++arg_pos]); |
|
std::vector<std::string> dataset_names; |
|
boost::split(dataset_names, save_feature_dataset_names, |
|
boost::is_any_of(",")); |
|
CHECK_EQ(blob_names.size(), dataset_names.size()) << |
|
" the number of blob names and dataset names must be equal"; |
|
size_t num_features = blob_names.size(); |
|
|
|
for (size_t i = 0; i < num_features; i++) { |
|
CHECK(feature_extraction_net->has_blob(blob_names[i])) |
|
<< "Unknown feature blob name " << blob_names[i] |
|
<< " in the network " << feature_extraction_proto; |
|
} |
|
|
|
int num_mini_batches = atoi(argv[++arg_pos]); |
|
|
|
std::vector<boost::shared_ptr<db::DB> > feature_dbs; |
|
std::vector<boost::shared_ptr<db::Transaction> > txns; |
|
const char* db_type = argv[++arg_pos]; |
|
for (size_t i = 0; i < num_features; ++i) { |
|
LOG(INFO)<< "Opening dataset " << dataset_names[i]; |
|
boost::shared_ptr<db::DB> db(db::GetDB(db_type)); |
|
db->Open(dataset_names.at(i), db::NEW); |
|
feature_dbs.push_back(db); |
|
boost::shared_ptr<db::Transaction> txn(db->NewTransaction()); |
|
txns.push_back(txn); |
|
} |
|
|
|
LOG(ERROR)<< "Extracting Features"; |
|
|
|
Datum datum; |
|
std::vector<int> image_indices(num_features, 0); |
|
for (int batch_index = 0; batch_index < num_mini_batches; ++batch_index) { |
|
feature_extraction_net->Forward(); |
|
for (int i = 0; i < num_features; ++i) { |
|
const boost::shared_ptr<Blob<Dtype> > feature_blob = |
|
feature_extraction_net->blob_by_name(blob_names[i]); |
|
int batch_size = feature_blob->num(); |
|
int dim_features = feature_blob->count() / batch_size; |
|
const Dtype* feature_blob_data; |
|
for (int n = 0; n < batch_size; ++n) { |
|
datum.set_height(feature_blob->height()); |
|
datum.set_width(feature_blob->width()); |
|
datum.set_channels(feature_blob->channels()); |
|
datum.clear_data(); |
|
datum.clear_float_data(); |
|
feature_blob_data = feature_blob->cpu_data() + |
|
feature_blob->offset(n); |
|
for (int d = 0; d < dim_features; ++d) { |
|
datum.add_float_data(feature_blob_data[d]); |
|
} |
|
string key_str = caffe::format_int(image_indices[i], 10); |
|
|
|
string out; |
|
CHECK(datum.SerializeToString(&out)); |
|
txns.at(i)->Put(key_str, out); |
|
++image_indices[i]; |
|
if (image_indices[i] % 1000 == 0) { |
|
txns.at(i)->Commit(); |
|
txns.at(i).reset(feature_dbs.at(i)->NewTransaction()); |
|
LOG(ERROR)<< "Extracted features of " << image_indices[i] << |
|
" query images for feature blob " << blob_names[i]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
for (int i = 0; i < num_features; ++i) { |
|
if (image_indices[i] % 1000 != 0) { |
|
txns.at(i)->Commit(); |
|
} |
|
LOG(ERROR)<< "Extracted features of " << image_indices[i] << |
|
" query images for feature blob " << blob_names[i]; |
|
feature_dbs.at(i)->Close(); |
|
} |
|
|
|
LOG(ERROR)<< "Successfully extracted the features!"; |
|
return 0; |
|
} |
|
|