he-cantillation
This model is a fine-tuned version of openai/whisper-large-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1042
- Wer: 11.7960
- Avg Precision Exact: 0.9096
- Avg Recall Exact: 0.9088
- Avg F1 Exact: 0.9088
- Avg Precision Letter Shift: 0.9281
- Avg Recall Letter Shift: 0.9274
- Avg F1 Letter Shift: 0.9274
- Avg Precision Word Level: 0.9303
- Avg Recall Word Level: 0.9298
- Avg F1 Word Level: 0.9297
- Avg Precision Word Shift: 0.9743
- Avg Recall Word Shift: 0.9743
- Avg F1 Word Shift: 0.9739
- Precision Median Exact: 1.0
- Recall Median Exact: 1.0
- F1 Median Exact: 1.0
- Precision Max Exact: 1.0
- Recall Max Exact: 1.0
- F1 Max Exact: 1.0
- Precision Min Exact: 0.0
- Recall Min Exact: 0.0
- F1 Min Exact: 0.0
- Precision Min Letter Shift: 0.0
- Recall Min Letter Shift: 0.0
- F1 Min Letter Shift: 0.0
- Precision Min Word Level: 0.0
- Recall Min Word Level: 0.0
- F1 Min Word Level: 0.0
- Precision Min Word Shift: 0.1429
- Recall Min Word Shift: 0.1
- F1 Min Word Shift: 0.1176
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 8000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Avg Precision Exact | Avg Recall Exact | Avg F1 Exact | Avg Precision Letter Shift | Avg Recall Letter Shift | Avg F1 Letter Shift | Avg Precision Word Level | Avg Recall Word Level | Avg F1 Word Level | Avg Precision Word Shift | Avg Recall Word Shift | Avg F1 Word Shift | Precision Median Exact | Recall Median Exact | F1 Median Exact | Precision Max Exact | Recall Max Exact | F1 Max Exact | Precision Min Exact | Recall Min Exact | F1 Min Exact | Precision Min Letter Shift | Recall Min Letter Shift | F1 Min Letter Shift | Precision Min Word Level | Recall Min Word Level | F1 Min Word Level | Precision Min Word Shift | Recall Min Word Shift | F1 Min Word Shift |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 8e-05 | 1 | 5.8860 | 117.0584 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.1314 | 0.08 | 1000 | 0.1577 | 22.1766 | 0.8258 | 0.8234 | 0.8238 | 0.8536 | 0.8516 | 0.8518 | 0.8571 | 0.8560 | 0.8558 | 0.9351 | 0.9372 | 0.9352 | 0.9091 | 0.9 | 0.9 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0769 | 0.0769 | 0.0769 |
0.0929 | 0.16 | 2000 | 0.1322 | 18.0894 | 0.8613 | 0.8621 | 0.8611 | 0.8856 | 0.8866 | 0.8855 | 0.8888 | 0.8901 | 0.8888 | 0.9503 | 0.9528 | 0.9508 | 0.9231 | 0.9231 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1111 | 0.125 |
0.0402 | 0.24 | 3000 | 0.1180 | 15.3622 | 0.8830 | 0.8851 | 0.8835 | 0.9048 | 0.9071 | 0.9055 | 0.9080 | 0.9104 | 0.9087 | 0.9617 | 0.9655 | 0.9631 | 0.9333 | 0.9375 | 0.9524 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
0.0372 | 0.32 | 4000 | 0.1094 | 14.3792 | 0.8904 | 0.8894 | 0.8894 | 0.9141 | 0.9132 | 0.9131 | 0.9170 | 0.9162 | 0.9161 | 0.9680 | 0.9686 | 0.9677 | 0.9375 | 0.9412 | 0.9524 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1 | 0.1176 |
0.0256 | 0.4 | 5000 | 0.1081 | 13.3518 | 0.9001 | 0.8983 | 0.8987 | 0.9198 | 0.9181 | 0.9185 | 0.9224 | 0.9211 | 0.9213 | 0.9710 | 0.9710 | 0.9705 | 1.0 | 1.0 | 0.9655 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2222 | 0.1667 | 0.1905 |
0.0211 | 0.48 | 6000 | 0.1029 | 12.5203 | 0.9063 | 0.9046 | 0.9050 | 0.9261 | 0.9245 | 0.9249 | 0.9281 | 0.9269 | 0.9271 | 0.9713 | 0.9714 | 0.9709 | 1.0 | 1.0 | 0.9677 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1111 |
0.0096 | 0.56 | 7000 | 0.1043 | 11.8699 | 0.9097 | 0.9091 | 0.9090 | 0.9284 | 0.9279 | 0.9277 | 0.9305 | 0.9304 | 0.9300 | 0.9731 | 0.9738 | 0.9730 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1 | 0.1176 |
0.0108 | 0.64 | 8000 | 0.1042 | 11.7960 | 0.9096 | 0.9088 | 0.9088 | 0.9281 | 0.9274 | 0.9274 | 0.9303 | 0.9298 | 0.9297 | 0.9743 | 0.9743 | 0.9739 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1 | 0.1176 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.2.1
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 67
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for cantillation/Teamim-large-v2_Random-True_Augmented_date-26-06-2024_10-34-39
Base model
openai/whisper-large-v2