YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Twitter-roBERTa-base
This is a RoBERTa-base model trained on ~58M tweets on top of the original RoBERTa-base checkpoint, as described and evaluated in the TweetEval benchmark (Findings of EMNLP 2020). To evaluate this and other LMs on Twitter-specific data, please refer to the Tweeteval official repository.
Preprocess Text
Replace usernames and links for placeholders: "@user" and "http".
def preprocess(text):
new_text = []
for t in text.split(" "):
t = '@user' if t.startswith('@') and len(t) > 1 else t
t = 'http' if t.startswith('http') else t
new_text.append(t)
return " ".join(new_text)
Example Masked Language Model
from transformers import pipeline, AutoTokenizer
import numpy as np
MODEL = "cardiffnlp/twitter-roberta-base"
fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL)
tokenizer = AutoTokenizer.from_pretrained(MODEL)
def print_candidates():
for i in range(5):
token = tokenizer.decode(candidates[i]['token'])
score = np.round(candidates[i]['score'], 4)
print(f"{i+1}) {token} {score}")
texts = [
"I am so <mask> π",
"I am so <mask> π’"
]
for text in texts:
t = preprocess(text)
print(f"{'-'*30}\n{t}")
candidates = fill_mask(t)
print_candidates()
Output:
------------------------------
I am so <mask> π
1) happy 0.402
2) excited 0.1441
3) proud 0.143
4) grateful 0.0669
5) blessed 0.0334
------------------------------
I am so <mask> π’
1) sad 0.2641
2) sorry 0.1605
3) tired 0.138
4) sick 0.0278
5) hungry 0.0232
Example Tweet Embeddings
from transformers import AutoTokenizer, AutoModel, TFAutoModel
import numpy as np
from scipy.spatial.distance import cosine
from collections import defaultdict
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModel.from_pretrained(MODEL)
def get_embedding(text):
text = preprocess(text)
encoded_input = tokenizer(text, return_tensors='pt')
features = model(**encoded_input)
features = features[0].detach().cpu().numpy()
features_mean = np.mean(features[0], axis=0)
return features_mean
MODEL = "cardiffnlp/twitter-roberta-base"
query = "The book was awesome"
tweets = ["I just ordered fried chicken π£",
"The movie was great",
"What time is the next game?",
"Just finished reading 'Embeddings in NLP'"]
d = defaultdict(int)
for tweet in tweets:
sim = 1-cosine(get_embedding(query),get_embedding(tweet))
d[tweet] = sim
print('Most similar to: ',query)
print('----------------------------------------')
for idx,x in enumerate(sorted(d.items(), key=lambda x:x[1], reverse=True)):
print(idx+1,x[0])
Output:
Most similar to: The book was awesome
----------------------------------------
1 The movie was great
2 Just finished reading 'Embeddings in NLP'
3 I just ordered fried chicken π£
4 What time is the next game?
Example Feature Extraction
from transformers import AutoTokenizer, AutoModel, TFAutoModel
import numpy as np
MODEL = "cardiffnlp/twitter-roberta-base"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
text = "Good night π"
text = preprocess(text)
# Pytorch
model = AutoModel.from_pretrained(MODEL)
encoded_input = tokenizer(text, return_tensors='pt')
features = model(**encoded_input)
features = features[0].detach().cpu().numpy()
features_mean = np.mean(features[0], axis=0)
#features_max = np.max(features[0], axis=0)
# # Tensorflow
# model = TFAutoModel.from_pretrained(MODEL)
# encoded_input = tokenizer(text, return_tensors='tf')
# features = model(encoded_input)
# features = features[0].numpy()
# features_mean = np.mean(features[0], axis=0)
# #features_max = np.max(features[0], axis=0)
BibTeX entry and citation info
Please cite the reference paper if you use this model.
@inproceedings{barbieri-etal-2020-tweeteval,
title = "{T}weet{E}val: Unified Benchmark and Comparative Evaluation for Tweet Classification",
author = "Barbieri, Francesco and
Camacho-Collados, Jose and
Espinosa Anke, Luis and
Neves, Leonardo",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.148",
doi = "10.18653/v1/2020.findings-emnlp.148",
pages = "1644--1650"
}
- Downloads last month
- 1,887
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.