Librarian Bot: Add base_model information to model

#2
Files changed (1) hide show
  1. README.md +17 -13
README.md CHANGED
@@ -4,6 +4,16 @@ datasets:
4
  metrics:
5
  - f1
6
  - accuracy
 
 
 
 
 
 
 
 
 
 
7
  model-index:
8
  - name: cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all
9
  results:
@@ -13,24 +23,18 @@ model-index:
13
  dataset:
14
  name: cardiffnlp/tweet_topic_single
15
  type: cardiffnlp/tweet_topic_single
 
16
  args: cardiffnlp/tweet_topic_single
17
- split: test_2021
18
  metrics:
19
- - name: F1
20
- type: f1
21
  value: 0.8948611931482575
22
- - name: F1 (macro)
23
- type: f1_macro
24
  value: 0.800952410284692
25
- - name: Accuracy
26
- type: accuracy
27
  value: 0.8948611931482575
28
- pipeline_tag: text-classification
29
- widget:
30
- - text: "I'm sure the {@Tampa Bay Lightning@} would’ve rather faced the Flyers but man does their experience versus the Blue Jackets this year and last help them a lot versus this Islanders team. Another meat grinder upcoming for the good guys"
31
- example_title: "Example 1"
32
- - text: "Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US."
33
- example_title: "Example 2"
34
  ---
35
  # cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all
36
 
 
4
  metrics:
5
  - f1
6
  - accuracy
7
+ pipeline_tag: text-classification
8
+ widget:
9
+ - text: I'm sure the {@Tampa Bay Lightning@} would’ve rather faced the Flyers but
10
+ man does their experience versus the Blue Jackets this year and last help them
11
+ a lot versus this Islanders team. Another meat grinder upcoming for the good guys
12
+ example_title: Example 1
13
+ - text: Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk.
14
+ Beautiful weather. Wishing everyone a safe Labor Day weekend in the US.
15
+ example_title: Example 2
16
+ base_model: cardiffnlp/twitter-roberta-base-dec2021
17
  model-index:
18
  - name: cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all
19
  results:
 
23
  dataset:
24
  name: cardiffnlp/tweet_topic_single
25
  type: cardiffnlp/tweet_topic_single
26
+ split: test_2021
27
  args: cardiffnlp/tweet_topic_single
 
28
  metrics:
29
+ - type: f1
 
30
  value: 0.8948611931482575
31
+ name: F1
32
+ - type: f1_macro
33
  value: 0.800952410284692
34
+ name: F1 (macro)
35
+ - type: accuracy
36
  value: 0.8948611931482575
37
+ name: Accuracy
 
 
 
 
 
38
  ---
39
  # cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all
40